Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F) \)

where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(q_0 \) is initial state
- \(F \subseteq Q \) is set of final states.
- \(\delta: Q \times \Sigma \rightarrow Q \)
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]
\[
\left(\{ q_0, q_1 \}, \{ 0, 1 \}, \delta, q_0, \{ q_1 \} \right)
\]

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0 \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q, s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0
 \[q_0 \quad q_1\]

2) 1 0 0
 \[q_0 \quad q_1\]

3) 1 0 0
 \[q_0 \quad q_1\]

4) 1 0 0
 \[q_0 \quad q_1\]
Definition:
\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,
\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \exists b^n a \mid n > 0 \)
Example:

$$L = \{ w \in \Sigma^* \mid w \text{ has an even number of a's and an even number of b's} \}$$
To trace through one string

Input

`abbbabaa`
To test multiple inputs:
Example: DFA that accepts even binary numbers that have an even number of 1’s.
ends in 0 and has even number of 1s

odd number of 1s

even number of 1's

<table>
<thead>
<tr>
<th>Input</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Accept</td>
</tr>
<tr>
<td>10</td>
<td>Reject</td>
</tr>
<tr>
<td>110</td>
<td>Accept</td>
</tr>
<tr>
<td>101</td>
<td>Reject</td>
</tr>
<tr>
<td>1010</td>
<td>Accept</td>
</tr>
<tr>
<td>10110</td>
<td>Reject</td>
</tr>
<tr>
<td>1010110</td>
<td>Accept</td>
</tr>
</tbody>
</table>
Definition A language is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = (Q, Σ, δ, q_0, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q_0 is initial state
F \subseteq Q is set of final states.

δ : Q x (\Sigma \cup \{\lambda\}) \rightarrow 2Q
Example

Note: In this example $\delta(q_0, a) = q_1, q_2$

$L = \{ a^2 a^n b | n > 0 \}$
Example

$L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}$
Definition \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\[
\delta^*(q_0, ab) = \{ q_5, q_6, q_2 \}
\]
\[
\delta^*(q_0, aba) = \{ q_3, q_3 \}
\]

Definition: For an NFA \(M \),

\[
L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}
\]
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D = \{ \mathcal{Q}_N \}$

$F_D = \{ Q \in Q_D \mid \exists g_i \in F_N \}$

$\delta_D : Q_D \times \Sigma \rightarrow Q_D$
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property
Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider \(L = \{ aaab, bbaa \} \)
\[
R1awb(L) = \{ bbaa, bbaa, bbab, bbaa, aabb, bbaa, bbaa \}
\]

Example 2: Consider \(\Sigma = \{ a, b \} \), \(L = \{ w \in \Sigma^* \mid w \) has an even number of a’s and an even number of b’s\}
\[
R1awb(L) = \{ \text{odd a's, odd b's} \}
\]

Proof:
Proof
Assume L is regular

\exists a DFA M s.t. $L = \mathbb{L}(M)$

$M = (Q, \Sigma, \delta, q_0, F)$

Construct an NFA M from M s.t. $\mathbb{L}(M) = \mathrm{Rawk}(L)$

Make a copy of M called $M' = (Q', \Sigma, \delta', q'_0, F')$.
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or
TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L={aaab, bbba}
TruncPreb(L)={aaab, aa}

Example 2: Consider L =
{(bba)^n | n > 0}
TruncPreb(L)={a(bba)^n | n>=0}

Proof:
Idea:

\[
\hat{M} = (\hat{Q}, \Sigma, \hat{\delta}, q_0, F)
\]

\[
\hat{Q} = Q \cup \hat{Q}'
\]

\[
\hat{F} = F'
\]
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable

These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F$$
$$\delta^*(p, w) \not\in F \Rightarrow \delta^*(q, w) \not\in F$$

Definition Two states p and q are distinguishable if $\exists \ w \in \Sigma^*$ s.t.

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \not\in F \ \text{OR} \ \delta^*(q, w) \not\in F \Rightarrow \delta^*(p, w) \in F$$
Example:
Example: