Section: Pushdown Automata

Ch. 7 - Pushdown Automata

A DFA = (Q, Σ, δ, q₀, F)

![Diagram of a DFA with input tape, tape head, and current state]
Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).
Definition: Nondeterministic PDA (NPDA) is defined by

\[M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \]

where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(\Gamma \) is stack alphabet
- \(q_0 \) is initial state
- \(z \) - start stack symbol, \(z \in \Gamma \)
- \(F \subseteq Q \) is set of final states.

\[\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \text{finite subsets of } Q \times \Gamma^* \]

Note: the Linz book uses \(z \) for bottom of stack marker, and JFLAP uses \(Z \) (capital Z) for bottom of stack marker.
Example of transitions

\[\delta(q_1, a, b) = \{(q_3, b), (q_4, ab), (q_6, \lambda)\} \]

The diagram for the above transitions is:
Instantaneous Description:

\[(q,w,u)\]

Description of a Move:

\[(q_1, aw, bx) \vdash (q_2, w, yx)\]

iff

\[(q_2, y) \in S(q_1, a, b)\]

Definition Let \(M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)\) be a NPDA. \(L(M)=\{w \in \Sigma^* \mid (q_0, w, z) \vdash^* (p, \lambda, u), p \in F, u \in \Gamma^*\}\). The NPDA accepts all strings that start in \(q_0\) and end in a final state.
Example: \(L = \{ a^n b^n \mid n \geq 0 \} \), \(\Sigma = \{ a, b \} \), \(\Gamma = \{ z, a \} \)

Below illustrates if you push \(abcZ \) on the stack, then \(a \) is on the top of the stack and \(Z \) on the bottom.
Another Definition for Language Acceptance

NPDA M accepts $L(M)$ by empty stack:

$$L(M) = \{ w \in \Sigma^* | (q_0, w, z)^* \vdash (p, \lambda, \lambda) \}$$
Example: $L = \{a^nb^mc^{n+m} | n, m > 0\}$,
$\Sigma = \{a, b, c\}$, $\Gamma = \{0, z\}$
Examples for you to try on your own: (solutions are at the end of the handout).

• $L = \{a^nb^m|m > n, m, n > 0\}$, $\Sigma = \{a, b\}$, $\Gamma = \{z, a\}$

• $L = \{a^nb^{n+m}c^m|n, m > 0\}$, $\Sigma = \{a, b, c\}$

• $L = \{a^nb^{2n}|n > 0\}$, $\Sigma = \{a, b\}$
Definition: A PDA $M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L=L(M)$.
Examples:

1. Previous pda for \(\{a^n b^n | n \geq 0 \} \) is deterministic?

2. Previous pda for
\(\{a^n b^m c^{n+m} | n, m > 0 \} \) is deterministic?

3. Previous pda for
\(\{ww^R | w \in \Sigma^+ \}, \Sigma = \{a, b\} \) is deterministic?
Example: \(\mathcal{L} = \{a^n b^m \mid m > n, m, n > 0\} \), \(\Sigma = \{a, b\} \), \(\Gamma = \{z, a\} \)

Example: \(\mathcal{L} = \{a^n b^{n+m} c^m \mid n, m > 0\} \), \(\Sigma = \{a, b, c\} \),

Example: \(\mathcal{L} = \{a^n b^{2n} \mid n > 0\} \), \(\Sigma = \{a, b\} \)