Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
 ○ concatenation (AND) (can omit)
 * star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^* = (a+b)^* a (a+b)^* \]
\[= \{a, aa, aba, \ldots\} \]
\[= \{(a+b)^n a (a+b)^m | n \geq 0, m \geq 0\}\]

Example:

\[(aa)^* \]

even number of a's
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{\lambda\}, \{a\} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s) \)
 (b) \(L(rs) = L(r) \circ L(s) \)
 (c) \(L((r)) = L(r) \)
 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

∗ highest

○

+

Example:

\[a b^* + c = (a(b^*) + c) \]**STOPPED HERE**
Examples:

1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has an odd number of a’s followed by an even number of b’s$\}$.
 $a(aa)^*(bb)^*$

2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has no more than 3 a’s and must end in ab\}$.
 $b^*(a + \lambda)b^*(a + \lambda)b^*ab$

3. Regular expression for all integers (including negative)
 $(- + \lambda)(1\ldots+9)(0+1\ldots+9)^* + 0$
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

Proof:
- \(\emptyset \)
- \(\{\lambda\} \)
- \(\{a\} \)

Suppose \(r \) and \(s \) are R.E.
1. \(r + s \)
2. \(r \circ s \)
3. \(r^* \)
Example

$ab^* + c$
Theorem Let \(L \) be regular. Then \(\exists \) R.E. \(r \) s.t. \(L = L(r) \).

Proof Idea: remove states sucessively until two states left

Proof:

\(L \) is regular

\[\Rightarrow \exists \text{ NFA } M \text{ s.t. } L = L(M) \]

1. Assume \(M \) has one final state and \(q_0 \not\in F \)

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with \(\emptyset \)
 Let \(r_{ij} \) stand for label of the edge from \(q_i \) to \(q_j \)
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^*r_{ij}r_{jj}^*r_{ji})^*r_{ii}^*r_{ij}r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik} r_{kk} r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk} r_{kk} r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik} r_{kk} r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk} r_{kk} r_{ki}$</td>
</tr>
<tr>
<td>remove state q_k</td>
<td></td>
</tr>
</tbody>
</table>
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}^* r^*_{kk} r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

$$r + r = r$$
$$s + r^* s = r^* s$$
$$r + \emptyset = r$$
$$r\emptyset = \{\}$$
$$\emptyset^* = \{\text{lambda}\}$$
$$r\lambda = r$$
$$(\lambda + r)^* = r^*$$
$$(\lambda + r)r^* = r^*$$

and similar rules.
Example:
Edit the regular expression below:

$$(((aa^{*}b)^{*}(a+aa^{*}b)b)^{*}(aa^{*}b)^{*}(a+aa^{*}b))$$
Grammar $G=(V,T,S,P)$

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$
$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V, \ x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{S, B\}, \{a, b\}, S, \mathcal{P}), \quad \mathcal{P} = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]

strings with even number of a's
Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\(\iff \) Given a regular grammar \(G \)
Construct NFA \(M \)
Show \(L(G) = L(M) \)

\(\Rightarrow \) Given a regular language
\(\exists \) DFA \(M \) s.t. \(L = L(M) \)
Construct reg. grammar \(G \)
Show \(L(G) = L(M) \)
Proof of Theorem:

\((\iff)\) Given a regular grammar \(G\)
\[G=(V,T,S,P)\]
\[V=\{V_0, V_1, \ldots, V_y\}\]
\[T=\{v_o, v_1, \ldots, v_z\}\]
\[S=V_0\]
Assume \(G\) is right-linear
(see book for left-linear case).
Construct NFA \(M\) s.t. \(L(G)=L(M)\)
If \(w\in L(G), w=v_1 v_2 \ldots v_k\)

\[V_0 \to v_1 V_i\]
\[\to v_1 v_2 V_j\]

\[\ldots\]
\[\to v_1 v_2 \ldots v_k\]

\[M = (Q, \Sigma, \delta, q_0, F)\]
$M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\})$

V_0 is the start (initial) state

For each production, $V_i \rightarrow aV_j,$

For each production, $V_i \rightarrow a,$

Show $L(G) = L(M)$

Thus, given R.G. G,

$L(G)$ is regular
(⇒) Given a regular language \(L \)
\(\exists \) DFA \(M \) s.t. \(L = L(M) \)
\(M = (Q, \Sigma, \delta, q_0, F) \)
\(Q = \{ q_0, q_1, \ldots, q_n \} \)
\(\Sigma = \{ a_1, a_2, \ldots, a_m \} \)
Construct R.G. \(G \) s.t. \(L(G) = L(M) \)
\(G = (Q, \Sigma, q_0, P) \)
if \(\delta(q_i, a_j) = q_k \) then

\[q_i \xrightarrow{a_j} q_k \]
if \(q_k \in F \) then

\[q_k \xrightarrow{} 2 \]
Show \(w \in L(M) \iff w \in L(G) \)
Thus, \(L(G) = L(M) \).
QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \ P = \]
\[S \to aB \mid bS \mid \lambda \]
\[B \to aS \mid bB \]
Example:

q0 -> a q1
q1 -> a q0
q1 -> b q1
q1 -> lambda
Hw 3 question 1
exchange

swap a as first char, with b as last char

force to end with an a
lots of copies....

abcdbddd exchange in
dbcdbddda
2. first aa with a