Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify \(\delta \),

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{ L, R, S \} \]

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

\((\Rightarrow) \): Given a standard TM \(M \), then there exists a TM \(M' \) with stay option such that \(L(M) = L(M') \).

Easy, just use same TM
• (\iff): Given a TM M with stay option, construct a standard TM M' such that $L(M) = L(M')$.

$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

$M' = (Q', \Sigma, \Gamma, \delta', q'_0, B, F')$

For each transition in M with a move (L or R) put the transition in M'. So, for

$$\delta(q_i, a) = (q_j, b, L \text{ or } R)$$

put into δ'

For each transition in M with S (stay-option), move right and move left. So for

$$\delta(q_i, a) = (q_j, b, S)$$

add a new state

$$S'(q'_i, a) = (q'_j, b, R)$$

$$S'(q'_i, c) = (q'_j, c, L) \quad \forall c \in \Gamma$$

$L(M) = L(M')$. QED.
Definition: A *multiple track* TM divides each cell of the tape into k cells, for some constant k.

A 3-track TM:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A multiple track TM starts with the input on the first track, all other tracks are blank.

$\delta: Q \times \Gamma \times \Gamma \times \Gamma \rightarrow Q \times \Gamma \times \Gamma \times \Gamma \times \{L,R\}$
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• (⇒): Given standard TM M there exists a TM M' with multiple tracks such that $L(M) = L(M')$.

 Easy, just use one track

• (⇐): Given a TM M with multiple tracks there exists a standard TM M' such that $L(M) = L(M')$.

 Encode each combination of symbols

 Finite no. of symbols

 ⇔ Finite no. of encoding symbols
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM M there exists a TM M’ with semi-infinite tape such that \(L(M) = L(M')\).

Given M, construct a 2-track semi-infinite TM M’

\(\text{on next page}\)

2-track \(\not=\) standard TM
(⇐): Given a TM M with semi-infinite tape there exists a standard TM M’ such that $L(M) = L(M').$

\textit{Easy! never goes past the start (to left off of it)}
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:

$$\delta : Q \times \Gamma^n \rightarrow Q \times \Gamma^n \times \{L,R\}.$$
Theorem: Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

- \(\Leftarrow\): Given standard TM M, construct a multitape TM M’ such that \(L(M) = L(M')\).

 Easy, just use one tape

- \(\Rightarrow\): Given n-tape TM M construct a standard TM M’ such that \(L(M) = L(M')\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulate one move, takes time, may have to move color of #’s one to left.
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

\[
\begin{array}{ccc}
| & a & b & c & \quad \text{input tape} & \text{(read only)} \\
\hline
\text{Control Unit} & b & b & d & \quad \text{read/write tape}
\end{array}
\]

\[\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\} \times \{L,R\}\]

\[\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\} \times \{L,R\}\]
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

- \((\Rightarrow)\): Given standard TM \(M\) there exists an off-line TM \(M'\) such that \(L(M)=L(M')\).
 - copy input to other tape
 - and then run like standard TM

- \((\Leftarrow)\): Given an off-line TM \(M\) there exists a standard TM \(M'\) such that \(L(M)=L(M')\).
 - off-line \(\Rightarrow\) 4 track \(\Rightarrow\) standard TM

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Running Time of Turing Machines

Example:

Given $L=\{a^n b^n c^n | n > 0\}$. Given $w \in \Sigma^*$, is w in L?

Write a 3-tape TM for this problem.

Algorithm
1. Start with input on tape 1
2. As scan a's put then on tape 2 & tape 3
3. As scan b's also scan the a's on tape 2
4. As you scan the c's, also scan the a's on tape 3

$O(n)$ linear

1-tape $\Rightarrow O(n^2)$
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

\[
\begin{array}{ccc}
\uparrow & & \\
& a & b & c \\
& & & \\
\downarrow & & \\
\end{array}
\]

Define \(\delta \):

\(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\} \)
Theorem: Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• (⇒): Given standard TM M, construct a 2-dim-tape TM M’ such that L(M) = L(M’).

 Easy, just use one row.

• (⇐): Given 2-dim tape TM M, construct a standard TM M’ such that L(M) = L(M’).
Number all the cells...
... -3, -2, -1, 1, 2, 3, ...

Unary, 0's for neg num, 1's for pos num.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,2</td>
<td>1,2</td>
<td>2,2</td>
</tr>
<tr>
<td>-2,1</td>
<td>-1,1</td>
<td>a</td>
</tr>
<tr>
<td>-2,-1</td>
<td>-1,-1</td>
<td>1,-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,-1</td>
</tr>
</tbody>
</table>

Construct M'

2-track TM with all cells we have been to

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>#</th>
<th>b</th>
<th>#</th>
<th>c</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
<tr>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
</tr>
</tbody>
</table>
Definition: A *nondeterministic* Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define \(\delta : Q \times \Sigma \rightarrow 2^{Q \times \Gamma \times \{L, R\}} \)

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

- \((\Rightarrow)\): Given deterministic TM M, construct a nondeterministic TM M’ such that \(L(M) = L(M') \).

 Easy, just no choices

- \((\Leftarrow)\): Given nondeterministic TM M, construct a deterministic TM M’ such that \(L(M) = L(M') \).

 Construct M’ to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\}$$

Being in state q_0 with input abc.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>q_0</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
The one move has three choices, so 2 additional machines are started.

```
#  #  #  #  #  #
#  b  b  c  #
#  q_1  #
#  a  b  c  #
#  q_2  #
#  c  b  c  #
#  q_1  #
#  #  #  #  #
```
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ: \(\mathcal{Q} \times \mathcal{Z} \times (\mathcal{M}_1 \times \mathcal{M}_2) \times (\mathcal{M}_1 \times \mathcal{M}_2) \rightarrow \text{subset of } \mathcal{Q} \times \mathcal{L}^* \times \mathcal{L}^* \)
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n | n > 0 \} \) [Yes]

2. \(L = \{ a^n b^n a^n b^n | n > 0 \} \) [Yes]

3. \(L = \{ w \in \Sigma^* | \text{number of } a \text{'s equals number of } b \text{'s equals number of } c \text{'s} \} \), \[\Sigma = \{a, b, c\}\] [Yes]
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \((\Rightarrow)\): Given 2-stack NPDA, construct a 3-tape TM \(M'\) such that \(L(M) = L(M')\).
• (\iff): Given standard TM M, construct a 2-stack NPDA M' such that $L(M) = L(M')$.
Universal TM - a programmable TM

- Input:
 - an encoded TM M
 - input string w

- Output:
 - Simulate M on w
An encoding of a TM

Let TM $M = \{Q, \Sigma, \Gamma, \delta, q_1, B, F\}$

- $Q = \{q_1, q_2, \ldots, q_n\}$
 Designate q_1 as the start state.
 Designate q_2 as the only final state.
 q_n will be encoded as n 1’s

- Moves
 L will be encoded by 1
 R will be encoded by 11

- $\Gamma = \{a_1, a_2, \ldots, a_m\}$
 where a_1 will always represent the B.
For example, consider the simple TM:

\[
\begin{array}{c}
q_1 \\
\downarrow \\
\downarrow \\
\downarrow \\
q_2
\end{array}
\]

\[
\begin{array}{c}
a;a,R \\
q_1 \\
b;a,L \\
q_2
\end{array}
\]

\[
\Gamma = \{B, a, b\}
\]

which would be encoded as

The TM has 2 transitions,

\[
\delta(q_1, a) = (q_1, a, R), \quad \delta(q_1, b) = (q_2, a, L)
\]

which can be represented as 5-tuples:

\[
(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)
\]

Thus, the encoding of the TM is:

0101101011011010111011011010
For example, the encoding of the TM above with input string “aba” would be encoded as:

01011010110110110110110110011011101101101

Question: Given $w \in \{0, 1\}^+$, is w the encoding of a TM?
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)
 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)
 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a)=(q,b,R)$.)
 (c) apply the move
 ● write on tape 2 (write b)
 ● move on tape 2 (move right)
 ● write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

• $S = \{ \text{ positive odd integers } \}$
• $S = \{ \text{ real numbers } \}$
• $S = \{ w \in \Sigma^+ \}, \Sigma = \{ a, b \}$
• $S = \{ \text{ TM’s } \}$
• $S = \{ (i,j) \mid i,j > 0, \text{ are integers} \}$
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{c|c|c|c}
\text{a} & \text{b} & \text{c} \\
\hline
\uparrow
\end{array}
\]

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\(M=(Q,\Sigma, \Gamma, \delta, q_0, B, F) \) such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of \([,] \)'s. Thus,
\(\delta(q_i,[]) = (q_j,[,R]) \), and \(\delta(q_i,]) = (q_j,],L) \)

Definition: Let \(M \) be a LBA.
\(L(M) = \{w \in (\Sigma - \{[,]\})^* | q_0[w] \vdash [x_1q_fx_2] \} \)

Example: \(L = \{a^n b^n c^n | n > 0 \} \) is accepted by some LBA