Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ,

$$\delta : Q \times \{L,R,S\} \rightarrow Q \times \{L,R,S\} \times \{L,R,S\}$$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

• (\Rightarrow): Given a standard TM M, then there exists a TM M' with stay option such that $L(M) = L(M')$.

 Easy, just use same TM
• \(\Leftrightarrow\): Given a TM \(M\) with stay option, construct a standard TM \(M'\) such that \(L(M) = L(M')\).

\[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \]

\[M' = (Q', \Sigma, \Gamma, \delta', q_0', B', F') \]

For each transition in \(M\) with a move (L or R) put the transition in \(M'\). So, for

\[\delta(q_i, a) = (q_j, b, L \text{ or } R) \]

put into \(\delta'\)

For each transition in \(M\) with S (stay-option), move right and move left. So for

\[\delta'(q_i, a) = (q_j, b, S) \]

\[\delta'(q_i', c) = (q_j', c, L) \quad \forall c \in \Gamma \]

\(L(M) = L(M')\). QED.
Definition: A *multiple track* TM divides each cell of the tape into \(k \) cells, for some constant \(k \).

A 3-track TM:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A multiple track TM starts with the input on the first track, all other tracks are blank.

\[\delta: Q \times \Gamma \times \Gamma \times \Gamma \rightarrow Q \times \Gamma \times \Gamma \times \Gamma \times \{L,R\} \]
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• (⇒): Given standard TM M there exists a TM M’ with multiple tracks such that L(M)=L(M’).

 Easy, just use one track

• (⇐): Given a TM M with multiple tracks there exists a standard TM M’ such that L(M)=L(M’).

 Encode each combination of symbols
 Finite no. of symbols
 ⇔ Finite no. of encoding symbols
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \(\Rightarrow \): Given standard TM \(M \) there exists a TM \(M' \) with semi-infinite tape such that \(L(M) = L(M') \).

Given \(M \), construct a 2-track semi-infinite TM \(M' \)

\[\text{on next page} \]

\[2 \text{-track } \rightarrow \text{ Standard TM} \]
\(\text{TM } M\)

\[
\begin{array}{ccccc}
\cdots & a & b & c & \cdots \\
\end{array}
\]

\(\text{TM } M'\)

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\cdots \leftarrow \text{right half}\)

\(\cdots \leftarrow \text{left half}\)

* (\(\Leftarrow\)): Given a TM M with semi-infinite tape there exists a standard TM M’ such that \(L(M) = L(M')\).

Easy! never goes past the start (to left of it)
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:

$$\delta : Q \times \Gamma^n \rightarrow Q \times \Gamma^n \times \{L,R\}^n$$
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \((\Leftarrow)\): Given standard TM \(M\), construct a multitape TM \(M'\) such that \(L(M)=L(M')\).

\[\text{Easy, just use one tape}\]

• \((\Rightarrow)\): Given \(n\)-tape TM \(M\) construct a standard TM \(M'\) such that \(L(M)=L(M')\).

\[\text{\(n\)-tape to \(2n\)-track \(fm\) to standard TM}\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulate one move; takes time, may have to move color of \#’s one to left.
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

\[\begin{array}{ccc} a & b & c \\ \hline \end{array} \]

input tape (read only)

Control Unit

\[\begin{array}{ccc} b & b & d \\ \hline \end{array} \]

read/write tape

\[\begin{array}{cc} Q \times \Sigma \times \Pi \rightarrow Q \times \Pi \times \{L,R\}\times\{L,R\}\times\{L,R\} \\
Q \times \Sigma \times \Pi \rightarrow Q \times \Pi \times \{L,R\}\times\{L,R\}\times\{L,R\} \end{array} \]
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

• \((\implies)\): Given standard TM \(M\) there exists an off-line TM \(M'\) such that \(L(M) = L(M')\).

 copy input to other tape
 and then run like standard TM

• \((\iff)\): Given an off-line TM \(M\) there exists a standard TM \(M'\) such that \(L(M) = L(M')\).

 off-line ⇔ 4 track ⇛ standard TM
Running Time of Turing Machines

Example:

Given \(L = \{a^n b^n c^n | n > 0 \} \). Given \(w \in \Sigma^* \), is \(w \) in \(L \)?

Write a 3-tape TM for this problem.

Algorithm

1. Start with input on tape 1
2. As scan a's put then on tape 2 & tape 3
3. As scan b's also scan the a's on tape 2
4. As you scan the c's, also scan the a's on tape 3

\(\Theta(n) \) linear 1-tape
\(1 \rightarrow \Theta(n^2) \)
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

Define δ:

$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\}$
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• (\Rightarrow): Given standard TM M, construct a 2-dim-tape TM M' such that $L(M) = L(M')$.

 ✍️ Easy, just use one row

• (\Leftarrow): Given 2-dim tape TM M, construct a standard TM M' such that $L(M) = L(M')$.

number all the cells

... -3, -2, -1, 1, 2, 3, ...

unary, 0½ for neg num, 1½ for pos num.

Construct M'

2-track TM with all cells we have been to

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>#</th>
<th>b</th>
<th>#</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>1 1</td>
<td>#1</td>
<td>#1</td>
</tr>
</tbody>
</table>
Definition: A *nondeterministic* Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define $\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \Delta \cup \{L, R\}}$

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

- (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that $L(M) = L(M')$.

 Easy, just no choices

- (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M' such that $L(M) = L(M')$.

Construct M' to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

\[\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\} \]

Being in state \(q_0 \) with input abc.
The one move has three choices, so 2 additional machines are started.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q2</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ: $\mathcal{Q} \times \Sigma \times \mathcal{M} \times \mathcal{M} \rightarrow \text{subset of } \mathcal{Q} \times \mathcal{M}^* \times \mathcal{M}^*$
Consider the following languages which could not be accepted by an NPDA.

1. $L = \{ a^n b^n c^n | n > 0 \}$
 \text{yes}

2. $L = \{ a^n b^n a^n b^n | n > 0 \}$
 \text{yes}

3. $L = \{ w \in \Sigma^* | \text{number of } a's \text{ equals number of } b's \text{ equals number of } c's \}$,
 $\Sigma = \{ a, b, c \}$
 \text{yes}
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \(\Rightarrow\): Given 2-stack NPDA, construct a 3-tape TM \(M'\) such that \(L(M) = L(M')\).
• (⇐): Given standard TM M, construct a 2-stack NPDA M’ such that L(M) = L(M’).

2-stack PDA is more powerful than 1 stack PDA
Universal TM - a programmable TM

- Input:
 - an encoded TM M
 - input string w

- Output:
 - Simulate M on w
An encoding of a TM

Let TM $M = \{Q, \Sigma, \Gamma, \delta, q_1, B, F\}$

- $Q = \{q_1, q_2, \ldots, q_n\}$
 Designate q_1 as the start state.
 Designate q_2 as the only final state.
 q_n will be encoded as n 1’s
- Moves
 L will be encoded by 1
 R will be encoded by 11
- $\Gamma = \{a_1, a_2, \ldots, a_m\}$
 where a_1 will always represent the B.

$\leq \in \Gamma$

$a_1 = 1$, $a_2 = 11$
For example, consider the simple TM:

\[
\begin{array}{c}
q_1 \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
a; a, R \\
b; a, L \\
q_2
\end{array}
\]

\[\Gamma = \{B, a, b\}\] which would be encoded as

The TM has 2 transitions,

\[\delta(q_1, a) = (q_1, a, R), \quad \delta(q_1, b) = (q_2, a, L)\]

which can be represented as 5-tuples:

\[(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)\]

Thus, the encoding of the TM is:

\[
0101101011011010111011011010
\]
For example, the encoding of the TM above with input string “aba” would be encoded as:

010110101101101101101101101001101110110

Question: Given $w \in \{0, 1\}^+$, is w the encoding of a TM?
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:

To make a move, figure out current symbol 11

Look in encoding of M for 1

01110110

Current state current symbol to read

Tell us next state, symbol to write, which direction to move
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)

 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)

 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a)=(q,b,R)$.)

 (c) apply the move

 • write on tape 2 (write b)
 • move on tape 2 (move right)
 • write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.
> assign unique number to each TM
> order set of all TM’s

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- \(S = \{\text{positive odd integers}\} \)
- \(S = \{\text{real numbers}\} \)
- \(S = \{w \in \Sigma^+\}, \Sigma = \{a, b\}\)
- \(S = \{\text{TM’s}\} \)
- \(S = \{(i,j) \mid i,j > 0, \text{are integers}\} \)
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{c}
[a] \\
\uparrow
\end{array}
\]

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\(M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)\) such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of []’s. Thus,
\(\delta(q_i, [) = (q_j, [, R), \text{ and } \delta(q_i,]) = (q_j,], L)\)

Definition: Let \(M\) be a LBA.
\(L(M) = \{w \in (\Sigma - \{[,]\})^* | q_0[w] \xrightarrow{*} [x_1q_fx_2]\}\)

Example: \(L = \{a^n b^n c^n | n > 0\}\) is accepted by some LBA