Which of the following languages are CFL?

- \(L = \{ a^n b^n c^j \mid 0 < n \leq j \} \)
- \(L = \{ a^n b^j a^n b^j \mid n > 0, j > 0 \} \)
- \(L = \{ a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \} \)
- \(L = \{ a^n b^j a^j b^n \mid n > 0, j > 0 \} \)

Pumping Lemma for Regular Language’s Let \(L \) be a regular language, Then there is a constant \(m \) such that \(w \in L, |w| \geq m, w = xyz \) such that

- \(|xy| \leq m \)
- \(|y| \geq 1 \)
- for all \(i \geq 0, xy^iz \in L \)

Pumping Lemma for CFL’s Let \(L \) be any infinite CFL. Then there is a constant \(m \) depending only on \(L \), such that for every string \(w \) in \(L \), with \(|w| \geq m \), we may partition \(w = uvxyz \) such that:

\[
|vxy| \leq m, \text{ (limit on size of substring)} \\
|vy| \geq 1, \text{ (} v \text{ and } y \text{ not both empty)} \\
\text{For all } i \geq 0, uv^ixy^iz \in L
\]

Proof: (sketch) There is a CFG \(G \) s.t. \(L = L(G) \).
Consider the parse tree of a long string in \(L \).
For any long string, some nonterminal \(N \) must appear twice in the path.
Example: Consider $L = \{a^n b^n c^n : n \geq 1\}$. Show L is not a CFL.

- **Proof:** (by contradiction)

 Assume L is a CFL and apply the pumping lemma.

 Let m be the constant in the pumping lemma and consider $w = a^m b^m c^m$. Note $|w| \geq m$.

 Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i x y^i z \in L$ for $i = 0, 1, 2, \ldots$

 Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's, then $uv^2 x y^2 z \notin L$ since there will be b's before a's.

 Thus, v and y can be only a's, b's, or c's (not mixed).

 Case 2: $v = a^t_1$, then $y = a^t_2$ or b^t_3 ($|vxy| \leq m$)

 If $y = a^t_2$, then $uv^2 x y^2 z = a^{m+t_1+t_2} b^m c^m \notin L$ since $t_1 + t_2 > 0$, $n(a) > n(b)$'s (number of a's is greater than number of b's)

 If $y = b^t_3$, then $uv^2 x y^2 z = a^{m+t_1} b^{m+t_3} c^m \notin L$ since $t_1 + t_3 > 0$, either $n(a) > n(c)$'s or $n(b) > n(c)$'s.

 Case 3: $v = b^t_1$, then $y = b^t_2$ or c^t_3

 If $y = b^t_2$, then $uv^2 x y^2 z = a^m b^{m+t_1+t_2} c^m \notin L$ since $t_1 + t_2 > 0$, $n(b) > n(a)$'s.

 If $y = c^t_3$, then $uv^2 x y^2 z = a^m b^{m+t_1} c^{m+t_3} \notin L$ since $t_1 + t_3 > 0$, either $n(b) > n(a)$'s or $n(c) > n(a)$'s.

 Case 4: $v = c^t_1$, then $y = c^t_2$

 then, $uv^2 x y^2 z = a^m b^{m+c^{m+t_1+t_2}} \notin L$ since $t_1 + t_2 > 0$, $n(c) > n(a)$'s.

 Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^i x y^i z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{a^n b^n c^n : n \geq 1\} \)?

Example: Consider \(L = \{a^n b^n c^p : p > n > 0\} \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = \) ______. Note \(|w| \geq m\).

 Show there is no division of \(w \) into \(uvxwz \) such that \(|vy| \geq 1\), \(|vxy| \leq m\), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Thus, there is no breakdown of \(w \) into \(uvxwz \) such that \(|vy| \geq 1\), \(|vxy| \leq m\) and for all \(i \geq 0\), \(uv^i xy^i z \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.
Example: Consider $L = \{a^i b^k : k = j^2\}$. Show L is not a CFL.

- **Proof**: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \ldots$

 Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i xy^i z \in L$ for $i = 0, 1, 2, \ldots$

 Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^2 xy^2 z \notin L$ since there will be b’s before a’s.

 Thus, v and y can be only a’s, and b’s (not mixed).

 Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^i xy^i z \in L$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Exercise: Prove the following is not a CFL by applying the pumping lemma. (answer is at the end of this handout).

Consider $L = \{a^{2n} b^{2p} c^n d^p : n, p \geq 0\}$. Show L is not a CFL.
Example: Consider $L = \{w\bar{w}w : w \in \Sigma^*\}$, $\Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. For example, $w = baab$, $\bar{w} = abbb$, $\bar{w} = baaabbb$. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \ldots$

Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i xy^i z \in L$ for $i = 0, 1, 2, \ldots$.

Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^i xy^i z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example: Consider \(L = \{a^n b^n a^n\} \). \(L \) is a CFL. The pumping lemma should apply!

Let \(m \geq 4 \) be the constant in the pumping lemma. Consider \(w = a^m b^m b^m a^m \).

We can break \(w \) into \(uvxyz \), with:

If you apply the pumping lemma to a CFL, then you should find a partition of \(w \) that works!

Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

- **Proof:**
 Given 2 CFG \(G_1 = (V_1, T_1, S_1, P_1) \) and \(G_2 = (V_2, T_2, S_2, P_2) \)

 - **Union:**
 Construct \(G_3 \) s.t. \(L(G_3) = L(G_1) \cup L(G_2) \).
 \(G_3 = (V_3, T_3, S_3, P_3) \)

 - **Concatenation:**
 Construct \(G_3 \) s.t. \(L(G_3) = L(G_1) \circ L(G_2) \).
 \(G_3 = (V_3, T_3, S_3, P_3) \)
- Star-Closure
 Construct G_3 s.t. $L(G_3) = L(G_1)^*$
 $G_3 = (V_3, T_3, S_3, P_3)$

QED.

Theorem CFL’s are NOT closed under intersection and complementation.

- **Proof:**
 - Intersection:

 - Complementation:
Theorem: CFL’s are closed under regular intersection. If \(L_1 \) is CFL and \(L_2 \) is regular, then \(L_1 \cap L_2 \) is CFL.

- **Proof:** (sketch) This proof is similar to the construction proof in which we showed regular languages are closed under intersection. We take a NPDA for \(L_1 \) and a DFA for \(L_2 \) and construct a NPDA for \(L_1 \cap L_2 \).

\[M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1) \] is an NPDA such that \(L(M_1) = L_1 \).

\[M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2) \] is a DFA such that \(L(M_2) = L_2 \).

Example of replacing arcs (NOT a Proof!):
Note this is not a proof, but sketches how we will combine the DFA and NPDA. We must formally define δ_3. If

then

Must show

if and only if

Must show:

$w \in L(M_3)$ iff $w \in L(M_1)$ and $w \in L(M_2)$.

QED.
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider \(L = \{a^{2n}b^{2m}c^n d^m : n, m \geq 0 \} \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = a^{2m}b^{2m}c^m d^m \).

 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

 Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2xy^2z \notin L \) since there will be \(b \)'s before \(a \)'s.

 Thus, \(v \) and \(y \) can be only \(a \)'s, \(b \)'s, \(c \)'s, or \(d \)'s (not mixed).

 Case 2: \(v = a^{t_1} \), then \(y = a^{t_2} \) or \(b^{t_3} \) (\(|vxy| \leq m \))

 If \(y = a^{t_2} \), then \(uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^m d^m \notin L \) since \(t_1 + t_2 > 0 \), the number of \(a \)'s is not twice the number of \(c \)'s.

 If \(y = b^{t_3} \), then \(uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^m d^m \notin L \) since \(t_1 + t_3 > 0 \), either the number of \(a \)'s (denoted \(n(a) \)) is not twice \(n(c) \) or \(n(b) \) is not twice \(n(d) \).

 Case 3: \(v = b^{t_1} \), then \(y = b^{t_2} \) or \(c^{t_3} \)

 If \(y = b^{t_2} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^m d^m \notin L \) since \(t_1 + t_2 > 0 \), \(n(b) > 2n(d) \).

 If \(y = c^{t_3} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1}c^{m+t_3}d^m \notin L \) since \(t_1 + t_3 > 0 \), either \(n(b) > 2n(d) \) or \(2n(c) > n(a) \).

 Case 4: \(v = c^{t_1} \), then \(y = c^{t_2} \) or \(d^{t_3} \)

 If \(y = c^{t_2} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^m d^m \notin L \) since \(t_1 + t_2 > 0 \), \(2n(c) > n(a) \).

 If \(y = d^{t_3} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1}c^{m+t_3}d^m \notin L \) since \(t_1 + t_3 > 0 \), either \(2n(c) > n(a) \) or \(2n(d) > n(b) \).

 Case 5: \(v = d^{t_1} \), then \(y = d^{t_2} \)

 then \(uv^2xy^2z = a^{2m}b^{2m}c^m d^{m+t_1+t_2} \notin L \) since \(t_1 + t_2 > 0 \), \(2n(d) > n(c) \).

 Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \) and for all \(i \geq 0 \), \(uv^i xy^i z \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.