Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines

1. Given Turing Machines M1 and M2

Notation for

- Run M1
- Run M2

M2

$$
\rightarrow \mathrm{M} 1 \rightarrow \mathrm{M} 2
$$

z represents any symbol in
2. Given Turing Machines M1 and M2

Notation for

- Run M1
- If x is current symbol
- then Run M2

$$
\rightarrow \mathrm{M} 1 \stackrel{\mathrm{x}}{\boldsymbol{\mathrm { x }}} \mathrm{M} 2
$$

3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
- then Run M2
- else Run M3

More Notation for Simplifying Turing Machines
Suppose $\Gamma=\{a, b, c, B\}$
z is any symbol in Γ
x is a specific symbol from Γ

1. s-start
2. R - move right
3. L - move left
4. x - write x (and don't move)
5. R_{a} - move right until you see an a
6. L_{a} - move left until you see an a
7. $\mathrm{R}_{\neg a}$ - move right until you see anything that is not an a
8. $\mathrm{L}_{\neg a}$ - move left until you see anything that is not an a
9. h - halt in a final state
10. $\xrightarrow{a, b}\} \xrightarrow{w}$

If the current symbol is a or b , let w represent the current symbol.

Example

Assume input string $w \in \Sigma^{+}, \Sigma=\{a, b\}$.
If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.
input: bab, output: babb
input: ba, output: ba

What is the running time?

Example

Assume input string $w \in \Sigma^{+}, \Sigma=\{a, b\},|w|>0$
For each a in the string, append a b to the end of the string.
input: $a b b a b b$, output: $a b b a b b b b$
The tape head should finish pointing at the leftmost symbol of w.

Turing's Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{R}$ is a TM M, which given input $\mathrm{d} \in \mathrm{D}$, halts with answer $\mathrm{f}(\mathrm{d}) \in \mathrm{R}$.

Example: $f(x+y)=x+y, x$ and y unary numbers.

start with:	$111+1111$
	\uparrow
end with:	1111111
	\uparrow

Example: Copy a String, $\mathrm{f}(\mathrm{w})=\mathrm{w} 0 \mathrm{w}, \mathrm{w} \in \Sigma^{*}, \Sigma=\{a, b, c\}$
Denoted by C

start with:	abac \uparrow
end with:	abac0abac \uparrow

Algorithm:

- Write a 0 at end of string
- For each symbol in string
- make a copy of the symbol

L R h
B

Example: Shift the string that is to the left of the tape head to the right,
denoted by S_{R} (shift right)
Below, "ba" is to the left of the tape head, so shift "ba" to the right.

start with:	aaBbabca \uparrow
end with:	aaBBbaca \uparrow

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
- shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position

Example: Shift the string that is to the right of tape head to the left, denote by S_{L} (shift left)

start with:	babcaBba end with:
	bacaBBba
\uparrow	

(similar to S_{R})

Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, $f(x * y)=x * y$, x and y unary numbers. Assume $x, y>0$.

start with:	$1111 * 11$ \uparrow
end with:	11111111
	\uparrow

