Compsci 334 - Mathematical Foundations of CS Dr. S. Rodger Section: Turing Machines - Building Blocks (handout)

Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines

- 1. Given Turing Machines M1 and M2 Notation for
 - $\bullet~{\rm Run}~{\rm M1}$
 - Run M2

- 2. Given Turing Machines M1 and M2 Notation for
 - Run M1
 - If x is current symbol
 - then Run M2

- 3. Given Turing Machines M1, M2, and M3 Notation for
 - Run M1
 - If **x** is current symbol
 - then Run M2
 - -else Run M3

z is any element from

More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

z is any symbol in Γ

x is a specific symbol from Γ

- 1. s start
- 2. R move right

3. L - move left

4. x - write x (and don't move)

- 5. R_a move right until you see an a
- 6. L_a move left until you see an a
- 7.
 $\mathbf{R}_{\neg a}$ move right until you see anything that is not an
 a
- 8. $L_{\neg a}$ move left until you see anything that is not an a

- 9. h halt in a final state
- 10. $\xrightarrow{a,b} \} \xrightarrow{w}$

If the current symbol is a or b, let w represent the current symbol.

Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If |w| is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?

Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}, |w| > 0$

For each a in the string, append a b to the end of the string.

input: abbabb, output: abbabbbb

The tape head should finish pointing at the leftmost symbol of w.

Turing's Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An *algorithm* for a function $f:D \rightarrow R$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in R$.

Example: f(x+y) = x + y, x and y unary numbers.

start with:	$111+1111$ \uparrow
end with:	1111111 ↑

Example: Copy a String, $f(w)=w0w, w \in \Sigma^*, \Sigma = \{a, b, c\}$

Denoted by C

start with:	abac ↑
end with:	abac0abac ↑

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol

Example: Shift the string that is to the left of the tape head to the right,

denoted by S_R (shift right)

Below, "ba" is to the left of the tape head, so shift "ba" to the right.

start with:	aaBbabca ↑
end with:	aaBBbaca ↑

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - $-\,$ shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position

s R
$$\xrightarrow{a,b,c,B}$$
 $\xrightarrow{v} 0$

L B L $\xrightarrow{a,b,c}$ \xrightarrow{w} B R w L

 \downarrow B
R₀ v L h

Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba \uparrow end with: bacaBBba \uparrow

(similar to S_R)

Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, f(x*y)=x*y, x and y unary numbers. Assume x,y>0.

start with:	1111*11 ↑
end with:	$\stackrel{111111111}{\uparrow}$