Parsing

Parsing: Deciding if $x \in \Sigma^{*}$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Aa} \\
& \mathrm{~A} \rightarrow \mathrm{AA}|\mathrm{ABa}| \lambda \\
& \mathrm{B} \rightarrow \mathrm{BBa}|\mathrm{~b}| \lambda
\end{aligned}
$$

Is ba in $L(G)$? Running time?

Remove λ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Aa} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{AA}|\mathrm{ABa}| \mathrm{Aa}|\mathrm{Ba}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{BBa}|\mathrm{Ba}| \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

Is ba in $\mathrm{L}(\mathrm{G})$? Running time?

Top-down Parser:

- Start with S and try to derive the string.

$$
S \rightarrow a S \mid b
$$

- Examples: LL Parser, Recursive Descent

Bottom-up Parser:

- Start with string, work backwards, and try to derive S.
- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

$$
\begin{aligned}
& \mathrm{G}=(\mathrm{V}, \mathrm{~T}, \mathrm{~S}, \mathrm{P}) \\
& \mathrm{w}, \mathrm{v} \in(\mathrm{~V} \cup \mathrm{~T})^{*} \\
& \mathrm{a} \in \mathrm{~T} \\
& \mathrm{X}, \mathrm{~A}, \mathrm{~B} \in \mathrm{~V} \\
& \mathrm{X}_{I} \in(\mathrm{~V} \cup \mathrm{~T})^{+}
\end{aligned}
$$

Definition: FIRST

Given a context-free grammar $\mathrm{G}=(V, T, S, P), a \in T$ and $w, v \in(V \cup T)^{*}$, the $\operatorname{FIRST}(w)$ is the set of terminals that can be the first terminal a in $w \stackrel{*}{\Rightarrow} a v . \lambda$ is in $\operatorname{FIRST}(w)$ if $w \stackrel{*}{\Rightarrow} \lambda$.

We show how to calculate FIRST for variables and terminals in the grammar, for λ and for strings.

Algorithm for FIRST

Given a grammar $\mathrm{G}=(V, T, S, P)$, calculate $\operatorname{FIRST}(w)$ for w in $(V \cup T)^{*}$,

1. For $a \in T, \operatorname{FIRST}(a)=\{a\}$.
2. $\operatorname{FIRST}(\lambda)=\{\lambda\}$.
3. For $A \in V$, set $\operatorname{FIRST}(A)=\{ \}$.
4. Repeat these steps until no more terminals or λ can be added to any FIRST set for variables.

For every production $A \rightarrow w$

$$
\operatorname{FIRST}(A)=\operatorname{FIRST}(A) \cup \operatorname{FIRST}(w)
$$

5. For $w=x_{1} x_{2} x_{3} \ldots x_{n}$ where $x_{i} \in(V \cup T)$
a) $\operatorname{FIRST}(w)=\operatorname{FIRST}\left(x_{1}\right)$
b) For i from 2 to n do:
if $x_{j} \stackrel{*}{\Rightarrow} \lambda$ for all j from 1 to $i-1$ then
$\operatorname{FIRST}(w)=\operatorname{FIRST}(w) \cup \operatorname{FIRST}\left(x_{i}\right)-\{\lambda\}$
c) If $x_{i} \stackrel{*}{\Rightarrow} \lambda$ for all i from 1 to n then
$\operatorname{FIRST}(w)=\operatorname{FIRST}(w) \cup\{\lambda\}$

Example: $L=\left\{a^{n} b^{m} c^{n}: n \geq 0,0 \leq m \leq 1\right\}$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSc} \mid \mathrm{B} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda
\end{aligned}
$$

$\operatorname{FIRST}(\mathrm{B})=$
$\operatorname{FIRST}(\mathrm{S})=$
$\operatorname{FIRST}(\mathrm{Sc})=$

Example

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{BCD} \mid \mathrm{aD} \\
& \mathrm{~A} \rightarrow \mathrm{CEB} \mid \mathrm{aA} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda \\
& \mathrm{C} \rightarrow \mathrm{~dB} \mid \lambda \\
& \mathrm{D} \rightarrow \mathrm{cA} \mid \lambda \\
& \mathrm{E} \rightarrow \mathrm{e} \mid \mathrm{fE}
\end{aligned}
$$

```
FIRST(S) =
FIRST(A) =
FIRST(B)=
FIRST(C)=
FIRST(D)=
FIRST(E)=
```


Definition: FOLLOW

Given a context-free grammar $\mathrm{G}=(V, T, S, P), A \in V, a \in T$ and $w, v \in(V \cup T)^{*}, \mathbf{F O L L O W}(A)$ is the set of terminals that can be the first terminal a immediately following A in some sentential form $v A a w . \$$ is always in FOLLOW(S).

Algorithm for FOLLOW

To calculate FOLLOW for the variables in $\mathrm{G}=(V, T, S, P)$. Let $A, B \in V$ and $v, w \in(V \cup T)^{*}$.

1. $\$$ is in $F O L L O W(S)$.
2. For $A \rightarrow v B, F O L L O W(A)$ is in $F O L L O W(B)$.
3. For $A \rightarrow v B w$:
(a) $\operatorname{FIRST}(w)-\{\lambda\}$ is in $\operatorname{FOLLOW}(B)$.
(b) If $\lambda \in \operatorname{FIRST}(w)$, then $F O L L O W(A)$ is in $F O L L O W(B)$.

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSc} \mid \mathrm{B} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda
\end{aligned}
$$

FOLLOW $(S)=$
$\operatorname{FOLLOW}(\mathrm{B})=$

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{BCD} \mid \mathrm{aD} \\
& \mathrm{~A} \rightarrow \mathrm{CEB} \mid \mathrm{aA} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda \\
& \mathrm{C} \rightarrow \mathrm{~dB} \mid \lambda \\
& \mathrm{D} \rightarrow \mathrm{cA} \mid \lambda \\
& \mathrm{E} \rightarrow \mathrm{e} \mid \mathrm{fE}
\end{aligned}
$$

$\operatorname{FOLLOW}(S)=$
$\operatorname{FOLLOW}(\mathrm{A})=$ $\operatorname{FOLLOW}(\mathrm{B})=$
$\operatorname{FOLLOW}(\mathrm{C})=$ $\operatorname{FOLLOW}(\mathrm{D})=$
$\operatorname{FOLLOW}(\mathrm{E})=$

