Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Review
Consider the CFG G:

\[
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
\]

Is ba in $L(G)$? Running time?

Remove λ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

\[
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
\]

Is ba in $L(G)$? Running time?

Top-down Parser:

- Start with S and try to derive the string.

\[
S \rightarrow aS \mid b
\]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[
G=(V,T,S,P) \\
w,v\in(V\cup T)^* \\
a\in T \\
X,A,B\in V \\
X_t \in (V\cup T)^+ \\
\]

Definition: FIRST

Given a context-free grammar \(G = (V, T, S, P) \), \(a \in T \) and \(w, v \in (V \cup T)^* \), the \textbf{FIRST}(w) is the set of terminals that can be the first terminal \(a \) in \(w \xrightarrow{a} av \). \(\lambda \) is in FIRST(w) if \(w \xrightarrow{\lambda} \).

We show how to calculate FIRST for variables and terminals in the grammar, for \(\lambda \) and for strings.
Algorithm for FIRST

Given a grammar G=(V,T,S,P), calculate FIRST(w) for w in (V∪T)*:

1. For \(a \in T \), FIRST(\(a \)) = \{\(a \}\).
2. FIRST(\(\lambda \)) = \{\(\lambda \}\).
3. For \(A \in V \), set FIRST(\(A \)) = {}.
4. Repeat these steps until no more terminals or \(\lambda \) can be added to any FIRST set for variables.

 For every production \(A \rightarrow w \)

 FIRST(\(A \)) = FIRST(\(A \)) \cup FIRST(\(w \))

5. For \(w = x_1x_2x_3\ldots x_n \) where \(x_i \in (V \cup T) \)

 a) FIRST(\(w \)) = FIRST(\(x_1 \))

 b) For \(i \) from 2 to \(n \) do:

 if \(x_j \rightarrow^* \lambda \) for all \(j \) from 1 to \(i-1 \) then

 FIRST(\(w \)) = FIRST(\(w \)) \cup FIRST(\(x_i \)) - \{\(\lambda \}\)

 c) If \(x_i \rightarrow^* \lambda \) for all \(i \) from 1 to \(n \) then

 FIRST(\(w \)) = FIRST(\(w \)) \cup \{\(\lambda \}\)

Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1 \} \)

\[
S \rightarrow aSc | B \\
B \rightarrow b | \lambda
\]

FIRST(B) =

FIRST(S) =

FIRST(Sc) =
Example

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid \lambda E
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =

Definition: FOLLOW

Given a context-free grammar \(G = (V, T, S, P) \), \(A \in V \), \(a \in T \) and \(w, v \in (V \cup T)^* \), \(\text{FOLLOW}(A) \) is the set of terminals that can be the first terminal \(a \) immediately following \(A \) in some sentential form \(vAaw \). $ is always in \(\text{FOLLOW}(S) \).

Algorithm for FOLLOW

To calculate FOLLOW for the variables in \(G=(V,T,S,P) \). Let \(A, B \in V \) and \(v, w \in (V \cup T)^* \).

1. $ is in \(\text{FOLLOW}(S) \).
2. For \(A \rightarrow vB \), \(\text{FOLLOW}(A) \) is in \(\text{FOLLOW}(B) \).
3. For \(A \rightarrow vBw \):
 (a) \(\text{FIRST}(w) - \{\lambda\} \) is in \(\text{FOLLOW}(B) \).
 (b) If \(\lambda \in \text{FIRST}(w) \), then \(\text{FOLLOW}(A) \) is in \(\text{FOLLOW}(B) \).
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FOLLOW(S) =
FOLLOW(B) =

Example:

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =