Compsci 334 - Mathematical Foundations of CS Dr. S. Rodger Section: Parsing (handout)

Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in L(G) for some CFG G.

Review

Consider the CFG G:

$$\begin{array}{l} \mathbf{S} \rightarrow \mathbf{A}\mathbf{a} \\ \mathbf{A} \rightarrow \mathbf{A}\mathbf{A} \mid \mathbf{A}\mathbf{B}\mathbf{a} \mid \lambda \\ \mathbf{B} \rightarrow \mathbf{B}\mathbf{B}\mathbf{a} \mid \mathbf{b} \mid \lambda \end{array}$$

Is ba in L(G)? Running time?

Remove λ -rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$\begin{split} \mathbf{S} &\to \mathbf{A}\mathbf{a} \mid \mathbf{a} \\ \mathbf{A} &\to \mathbf{A}\mathbf{A} \mid \mathbf{A}\mathbf{B}\mathbf{a} \mid \mathbf{A}\mathbf{a} \mid \mathbf{B}\mathbf{a} \mid \mathbf{a} \\ \mathbf{B} &\to \mathbf{B}\mathbf{B}\mathbf{a} \mid \mathbf{B}\mathbf{a} \mid \mathbf{a} \mid \mathbf{b} \end{split}$$

Is ba in L(G)? Running time?

Top-down Parser:

• Start with S and try to derive the string.

$$S \to aS \mid b$$

• Examples: LL Parser, Recursive Descent

Bottom-up Parser:

- Start with string, work backwards, and try to derive S.
- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

$$\begin{aligned} &\mathbf{G}{=}(\mathbf{V}{,}\mathbf{T}{,}\mathbf{S}{,}\mathbf{P})\\ &\mathbf{w}{,}\mathbf{v}{\in}(\mathbf{V}{\cup}\mathbf{T})^*\\ &\mathbf{a}{\in}\mathbf{T}\\ &\mathbf{X}{,}\mathbf{A}{,}\mathbf{B}{\in}\mathbf{V}\\ &\mathbf{X}_{I}{\ \in}(\mathbf{V}{\cup}\mathbf{T})^{+} \end{aligned}$$

Definition: FIRST

Given a context-free grammar $G = (V, T, S, P), a \in T \text{ and } w, v \in (V \cup T)^*, \text{ the } \mathbf{FIRST}(w) \text{ is the set of terminals that can be the first terminal } a \text{ in } w \stackrel{*}{\Rightarrow} av. \lambda \text{ is in } \mathrm{FIRST}(w) \text{ if } w \stackrel{*}{\Rightarrow} \lambda.$

We show how to calculate FIRST for variables and terminals in the grammar, for λ and for strings.

Algorithm for FIRST

Given a grammar G=(V,T,S,P), calculate FIRST(w) for w in $(V \cup T)^*$,

- 1. For $a \in T$, $FIRST(a) = \{a\}$.
- 2. $FIRST(\lambda) = {\lambda}$.
- 3. For $A \in V$, set $FIRST(A) = \{\}$.
- 4. Repeat these steps until no more terminals or λ can be added to any FIRST set for variables.

For every production
$$A \to w$$

 $FIRST(A) = FIRST(A) \cup FIRST(w)$

- 5. For $w = x_1 x_2 x_3 \dots x_n$ where $x_i \in (V \cup T)$
 - a) $FIRST(w) = FIRST(x_1)$
 - b) For i from 2 to n do:

if
$$x_j \stackrel{*}{\Rightarrow} \lambda$$
 for all j from 1 to $i-1$ then
 $FIRST(w) = FIRST(w) \cup FIRST(x_i) - \{\lambda\}$

c) If $x_i \stackrel{*}{\Rightarrow} \lambda$ for all i from 1 to n then FIRST $(w) = \text{FIRST}(w) \cup \{\lambda\}$

Example:
$$L = \{a^n b^m c^n : n \ge 0, 0 \le m \le 1\}$$

$$\begin{array}{l} S \rightarrow aSc \mid B \\ B \rightarrow b \mid \lambda \end{array}$$

$$FIRST(B) =$$

$$FIRST(S) =$$

$$FIRST(Sc) =$$

Example

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{BCD} \mid \mathbf{aD} \\ \mathbf{A} &\rightarrow \mathbf{CEB} \mid \mathbf{aA} \\ \mathbf{B} &\rightarrow \mathbf{b} \mid \lambda \\ \mathbf{C} &\rightarrow \mathbf{dB} \mid \lambda \\ \mathbf{D} &\rightarrow \mathbf{cA} \mid \lambda \\ \mathbf{E} &\rightarrow \mathbf{e} \mid \mathbf{fE} \end{split}$$

- FIRST(S) =
- FIRST(A) =
- FIRST(B) =
- FIRST(C) =
- FIRST(D) =
- FIRST(E) =

Definition: FOLLOW

Given a context-free grammar G = (V, T, S, P), $A \in V$, $a \in T$ and $w, v \in (V \cup T)^*$, **FOLLOW**(A) is the set of terminals that can be the first terminal a immediately following A in some sentential form vAaw. \$ is always in FOLLOW(S).

Algorithm for FOLLOW

To calculate FOLLOW for the variables in G=(V,T,S,P). Let $A,B\in V$ and $v,w\in (V\cup T)^*$.

- 1. \$ is in FOLLOW(S).
- 2. For $A \to vB$, FOLLOW(A) is in FOLLOW(B).
- 3. For $A \to vBw$:
 - (a) $FIRST(w) \{\lambda\}$ is in FOLLOW(B).
 - (b) If $\lambda \in FIRST(w)$, then FOLLOW(A) is in FOLLOW(B).

Example:

$$S \to aSc \mid B$$
$$B \to b \mid \lambda$$

FOLLOW(S) =

FOLLOW(B) =

Example:

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{BCD} \mid \mathbf{aD} \\ \mathbf{A} &\rightarrow \mathbf{CEB} \mid \mathbf{aA} \\ \mathbf{B} &\rightarrow \mathbf{b} \mid \lambda \\ \mathbf{C} &\rightarrow \mathbf{dB} \mid \lambda \\ \mathbf{D} &\rightarrow \mathbf{cA} \mid \lambda \\ \mathbf{E} &\rightarrow \mathbf{e} \mid \mathbf{fE} \end{split}$$

FOLLOW(S) =

FOLLOW(A) =

FOLLOW(B) =

FOLLOW(C) =

FOLLOW(D) =

FOLLOW(E) =