Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in L(G) for some CFG G.

Consider the CFG G:

$$\begin{array}{l} \mathbf{S} \rightarrow \mathbf{A} \mathbf{a} \\ \mathbf{A} \rightarrow \mathbf{A} \mathbf{A} \mid \mathbf{A} \mathbf{B} \mathbf{a} \mid \lambda \\ \mathbf{B} \rightarrow \mathbf{B} \mathbf{B} \mathbf{a} \mid \mathbf{b} \mid \lambda \end{array}$$

Is ba in L(G)? Running time?

New grammar G' is:

$$egin{array}{c|c} \mathbf{S}
ightarrow \mathbf{Aa} \mid \mathbf{a} \ \mathbf{A}
ightarrow \mathbf{AA} \mid \mathbf{ABa} \mid \mathbf{Aa} \mid \mathbf{Ba} \mid \mathbf{a} \ \mathbf{B}
ightarrow \mathbf{BBa} \mid \mathbf{Ba} \mid \mathbf{a} \mid \mathbf{b} \end{array}$$

Is ba in L(G)? Running time?

Top-down Parser:

• Start with S and try to derive the string.

 $\mathbf{S} \to \mathbf{aS} ~|~ \mathbf{b}$

• Examples: LL Parser, Recursive Descent

Bottom-up Parser:

• Start with string, work backwards, and try to derive S.

• Examples: Shift-reduce, Operator-Precedence, LR Parser The function FIRST:

$$egin{aligned} \mathbf{G}{=}(\mathbf{V}{,}\mathbf{T}{,}\mathbf{S}{,}\mathbf{P})\ \mathbf{w}{,}\mathbf{v}{\in}(\mathbf{V}{\cup}\mathbf{T})^*\ \mathbf{a}{\in}\mathbf{T}\ \mathbf{X}{,}\mathbf{A}{,}\mathbf{B}{\in}\mathbf{V}\ \mathbf{X}_I{\in}(\mathbf{V}{\cup}\mathbf{T})^+ \end{aligned}$$

Definition: FIRST

Given a context-free grammar $\mathbf{G} = (V, T, S, P), a \in T$ and $w, v \in (V \cup T)^*$, the FIRST(w) is the set of terminals that can be the first terminal a in $w \stackrel{*}{\Rightarrow} av. \lambda$ is in FIRST(w) if $w \stackrel{*}{\Rightarrow} \lambda$.

We show how to calculate FIRST for variables and terminals in the grammar, for λ and for strings.

Algorithm for FIRST

Given a grammar G=(V,T,S,P), calculate FIRST(w) for w in $(V \cup T)^*$,

1. For
$$a \in T$$
, $FIRST(a) = \{a\}$.

2. FIRST
$$(\lambda) = \{\lambda\}.$$

- 3. For $A \in V$, set $\operatorname{FIRST}(A) = \{\}$.
- 4. Repeat these steps until no more terminals or λ can be added to any FIRST set for variables.

For every production $A \rightarrow w$ FIRST(A) = FIRST(A) \cup FIRST(w)

5. For
$$w = x_1 x_2 x_3 \dots x_n$$
 where
 $x_i \in (V \cup T)$
a) FIRST(w) = FIRST(x_1)
b)
For i from 2 to n do:
if $x_j \stackrel{*}{\Rightarrow} \lambda$ for all j from 1 to $i - 1$ then
FIRST(w) = FIRST(w) \cup FIRST(x_i) - { λ }
c)
If $x_i \stackrel{*}{\Rightarrow} \lambda$ for all i from 1 to n then
FIRST(w) = FIRST(w) \cup { λ }

Example:

$$\begin{array}{l} \mathbf{S} \rightarrow \mathbf{aSc} \mid \mathbf{B} \\ \mathbf{B} \rightarrow \mathbf{b} \mid \lambda \end{array}$$

FIRST(B) =FIRST(S) =FIRST(Sc) =

Example

$$\begin{array}{l} \mathbf{S} \rightarrow \mathbf{B}\mathbf{C}\mathbf{D} \mid \mathbf{a}\mathbf{D} \\ \mathbf{A} \rightarrow \mathbf{C}\mathbf{E}\mathbf{B} \mid \mathbf{a}\mathbf{A} \\ \mathbf{B} \rightarrow \mathbf{b} \mid \lambda \\ \mathbf{C} \rightarrow \mathbf{d}\mathbf{B} \mid \lambda \\ \mathbf{D} \rightarrow \mathbf{c}\mathbf{A} \mid \lambda \\ \mathbf{D} \rightarrow \mathbf{e} \mid \mathbf{f}\mathbf{E} \end{array}$$

FIRST(S) =

- FIRST(A) =

- FIRST(B) =

FIRST(D) =

FIRST(E) =

- FIRST(C) =

8

Definition: FOLLOW

Given a context-free grammar $G = (V, T, S, P), A \in V, a \in T$ and $w, v \in (V \cup T)^*$, FOLLOW(A) is the set of terminals that can be the first terminal a immediately following A in some sentential form vAaw. \$ is always in FOLLOW(S).

Algorithm for FOLLOW

To calculate FOLLOW for the variables in G=(V,T,S,P). Let $A, B \in V$ and $v, w \in (V \cup T)^*$.

- **1. \$** is in FOLLOW(S).
- **2.** For $A \rightarrow vB$, FOLLOW(A) is in FOLLOW(B).
- **3. For** $A \rightarrow vBw$:
 - (a) $FIRST(w) \{\lambda\}$ is in FOLLOW(B).
 - (b) If $\lambda \in FIRST(w)$, then FOLLOW(A) is in FOLLOW(B).

Example:

$$egin{array}{c} \mathbf{S}
ightarrow \mathbf{aSc} \mid \mathbf{B} \ \mathbf{B}
ightarrow \mathbf{b} \mid \lambda \end{array}$$

FOLLOW(S) =FOLLOW(B) = Example:

$$\begin{array}{l} \mathbf{S} \rightarrow \mathbf{B}\mathbf{C}\mathbf{D} \mid \mathbf{a}\mathbf{D} \\ \mathbf{A} \rightarrow \mathbf{C}\mathbf{E}\mathbf{B} \mid \mathbf{a}\mathbf{A} \\ \mathbf{B} \rightarrow \mathbf{b} \mid \lambda \\ \mathbf{C} \rightarrow \mathbf{d}\mathbf{B} \mid \lambda \\ \mathbf{D} \rightarrow \mathbf{c}\mathbf{A} \mid \lambda \\ \mathbf{D} \rightarrow \mathbf{e} \mid \mathbf{f}\mathbf{E} \end{array}$$

- FOLLOW(S) =
- FOLLOW(A) =
- FOLLOW(B) =
- FOLLOW(C) =
- FOLLOW(D) =
- FOLLOW(E) =