Section: Parsing

Parsing: Deciding if \(x \in \Sigma^* \) is in \(L(G) \) for some CFG \(G \).

Consider the CFG \(G \):

\[
\begin{align*}
S & \rightarrow Aa \\
A & \rightarrow AA \mid ABa \mid \lambda \\
B & \rightarrow BBa \mid b \mid \lambda
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?

New grammar \(G' \) is:

\[
\begin{align*}
S & \rightarrow Aa \mid a \\
A & \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B & \rightarrow BBa \mid Ba \mid a \mid b
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?
Top-down Parser:

- Start with S and try to derive the string.

$$S \rightarrow aS \mid b$$

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

• Start with string, work backwards, and try to derive S.

• Examples: Shift-reduce, Operator-Precedence, LR Parser
The function FIRST:

\[G=(V,T,S,P) \]

\[w,v \in (V \cup T)^* \]

\[a \in T \]

\[X,A,B \in V \]

\[X_I \in (V \cup T)^+ \]

Definition: FIRST

Given a context-free grammar \(G = (V, T, S, P) \), \(a \in T \) and \(w, v \in (V \cup T)^* \), the FIRST\((w)\) is the set of terminals that can be the first terminal \(a \) in \(w \Rightarrow^* av \). \(\lambda \) is in FIRST\((w)\) if \(w \Rightarrow^* \lambda \).

We show how to calculate FIRST for variables and terminals in the grammar, for \(\lambda \) and for strings.
Algorithm for FIRST

Given a grammar $G=(V, T, S, P)$, calculate $\text{FIRST}(w)$ for w in $(V \cup T)^*$,

1. For $a \in T$, $\text{FIRST}(a) = \{a\}$.
2. $\text{FIRST}(\lambda) = \{\lambda\}$.
3. For $A \in V$, set $\text{FIRST}(A) = \{\}$.
4. Repeat these steps until no more terminals or λ can be added to any FIRST set for variables.

For every production $A \rightarrow w$

$\text{FIRST}(A) = \text{FIRST}(A) \cup \text{FIRST}(w)$
5. For \(w = x_1 x_2 x_3 \ldots x_n \) where
\[x_i \in (V \cup T) \]

a) \(\text{FIRST}(w) = \text{FIRST}(x_1) \)

b) For \(i \) from 2 to \(n \) do:

 if \(x_j \Rightarrow \lambda \) for all \(j \) from 1 to \(i - 1 \) then
 \[\text{FIRST}(w) = \text{FIRST}(w) \cup \text{FIRST}(x_i) - \{\lambda}\]

c) If \(x_i \Rightarrow \lambda \) for all \(i \) from 1 to \(n \) then
 \[\text{FIRST}(w) = \text{FIRST}(w) \cup \{\lambda}\]
Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

\[
\text{FIRST}(B) = \\
\text{FIRST}(S) = \\
\text{FIRST}(Sc) =
\]
Example

S → BCD | aD
A → CEB | aA
B → b | λ
C → dB | λ
D → cA | λ
E → e | fE

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: FOLLOW

Given a context-free grammar $G = (V, T, S, P)$, $A \in V$, $a \in T$ and $w, v \in (V \cup T)^*$, $\text{FOLLOW}(A)$ is the set of terminals that can be the first terminal a immediately following A in some sentential form $vAaw$. $\$$ is always in $\text{FOLLOW}(S)$.
Algorithm for FOLLOW

To calculate FOLLOW for the variables in G=(V, T, S, P). Let A, B ∈ V and v, w ∈ (V ∪ T)*.

1. $ is in FOLLOW(S).

2. For A → vB, FOLLOW(A) is in FOLLOW(B).

3. For A → vBw:

 (a) FIRST(w) − {λ} is in FOLLOW(B).

 (b) If λ ∈ FIRST(w), then FOLLOW(A) is in FOLLOW(B).
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\text{FOLLOW}(S) =
\text{FOLLOW}(B) =
Example:

S → BCD | aD
A → CEB | aA
B → b | λ
C → dB | λ
D → cA | λ
E → e | fE

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =