Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

M = (Q, Σ, δ, q₀, F) =

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) =
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

1) δ*q(0, λ) = q
2) δ*q(0, wa) = δ(δ*q(q₀, w), a)

Definition The language accepted by a DFA M=(Q,Σ,δ,q₀,F) is set of all strings on Σ accepted by M. Formally,

L(M)=\{w ∈ Σ* | δ*(q₀, w) ∈ F\}
Trap State

Example: \(L(M) = \)

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example:

\(L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s} \} \)

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = L(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA\(=(Q, \Sigma, \delta, q_0, F)\)

where

- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states.
- \(\delta:Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q\)

Example

Note: In this example \(\delta(q_0, a) = \)

L=

Example

\(L=\{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}\)

Definition \(q_j \in \delta^*(q_i, w)\) if and only if there is a walk from \(q_i\) to \(q_j\) labeled \(w\).

Example From previous example:

\(\delta^*(q_0, ab) = \)

\(\delta^*(q_0, aba) = \)

Definition: For an NFA \(M\), \(L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}\)

The language accepted by nfa \(M\) is all strings \(w\) such that there exists a walk labeled \(w\) from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

![NFA Diagram]

Theorem Given an NFA $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D =$

$F_D =$

$\delta_D :$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A = \{q_i, q_j, \ldots, q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider $L = \{aaab, bbab\}$

$R1awb(L) = \{\}$

Example 2: Consider $\Sigma = \{a, b\}$, $L = \{w \in \Sigma^* \mid w \text{ has an even number of a's and an even number of b's}\}$

$R1awb(L) = \{\}$

Proof:
Properties and Proving - Problem 2

Consider the property Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L=\{aaab, bbba\}

TruncPreb(L)=

Example 2: Consider L = \{(bba)^n \mid n > 0\}

TruncPreb(L)=

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR } \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
$$
Example:
Example: