Section: Properties of Regular Languages

Example

\[L = \{ a^n b a^n \mid n > 0 \} \]

Closure Properties

A set is closed over an operation if

\[L_1, L_2 \in \text{class} \]
\[L_1 \text{ op } L_2 = L_3 \]
\[\Rightarrow L_3 \in \text{class} \]
$L = \{ x \mid x \text{ is a positive even integer} \}$

L is closed under

addition?
multiplication?
subtraction?
division?

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

$L_1 \cup L_2$
$L_1 \cap L_2$
L_1L_2
\overline{L}_1
L_1^*

are regular languages.
Proof (sketch)

L_1 and L_2 are regular languages
$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.
$L_1 = L(r_1)$ and $L_2 = L(r_2)$
$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$
\Rightarrow closed under union
r_1r_2 is r.e. denoting L_1L_2
\Rightarrow closed under concatenation
r_1^* is r.e. denoting L_1^*
\Rightarrow closed under star-closure
complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' =$

δ':
Example:
Regular languages are closed under

reversal \(L^R \)
difference \(L_1 - L_2 \)
right quotient \(L_1 / L_2 \)
homomorphism \(h(L) \)
Right quotient

Def: $L_1/L_2 = \{x \mid xy \in L_1 \text{ for some } y \in L_2\}$

Example:

$L_1 = \{a^*b^* \cup b^*a^*\}$
$L_2 = \{b^n \mid n \text{ is even, } n > 0\}$
$L_1/L_2 =$
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M=(Q,\Sigma,\delta,q_0,F)$ s.t. $L_1 = L(M)$.

Construct DFA $M'=(Q,\Sigma,\delta,q_0,F')$

For each state i do

Make i the start state (representing L_{i}')

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

$$h(a) = 11$$
$$h(b) = 00$$
$$h(c) = 0$$

$$h(bc) =$$

$$h(ab^*) =$$
Questions about regular languages:

L is a regular language.

• Given L, \(\Sigma \), \(w \in \Sigma^* \), is \(w \in L \)?

• Is \(L \) empty?

• Is \(L \) infinite?

• Does \(L_1 = L_2 \)?
Identifying Nonregular Languages

If a language \(L \) is finite, is \(L \) regular?

If \(L \) is infinite, is \(L \) regular?

- \(L_1 = \{a^n b^m | n > 0, m > 0\} = \)
- \(L_2 = \{a^n b^n | n > 0\} \)
Prove that $L_2 = \{a^n b^n | n > 0\}$ is ?

• Proof: Suppose L_2 is regular.
 $\Rightarrow \exists$ DFA M that recognizes L_2
Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

\[
\begin{align*}
|xy| & \leq m \\
|y| & \geq 1 \\
xy^iz & \in L \text{ for all } i \geq 0
\end{align*}
\]
To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.

 Assume L is regular.

 \Rightarrow L satisfies the pumping lemma.

 Choose a long string w in L, $|w| \geq m$.

 Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \leq m$, $|y| \geq 1$ and $xy^i z \in L \ \forall \ i \geq 0$.

 The pumping lemma does not hold. Contradiction!

 \Rightarrow L is not regular. QED.
Example $L = \{a^n c b^n | n > 0\}$

L is not regular.

- **Proof:**
 Assume L is regular.
 \Rightarrow the pumping lemma holds.
 Choose $w =$
Example $L=\{a^n b^{n+s} c^s | n, s > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w = \ldots$

 So the partition is:
Example $\Sigma = \{a, b\}$,
$L = \{w \in \Sigma^* | n_a(w) > n_b(w)\}$

L is not regular.

- **Proof:**
 Assume L is regular.
 \Rightarrow the pumping lemma holds.
 Choose $w =$
 So the partition is:
Example $L = \{a^3b^n c^{n-3} | n > 3\}$
(shown in detail on handout)
L is not regular.
To Use Closure Properties to prove L is not regular:

- **Proof Outline:**

 Assume L is regular.

 Apply closure properties to L and other regular languages, constructing L' that you know is not regular.

 closure properties $\Rightarrow L'$ is regular. Contradiction!

 L is not regular. QED.
Example \(L = \{a^3b^n c^{n-3} | n > 3\} \)

\(L \) is not regular.

- Proof: (proof by contradiction)
 - Assume \(L \) is regular.
 - Define a homomorphism \(h : \Sigma \rightarrow \Sigma^* \)
 - \(h(a) = a \) \(h(b) = a \) \(h(c) = b \)
 - \(h(L) = \)
Example $L = \{a^n b^m a^m | m \geq 0, n \geq 0\}$

L is not regular.

- **Proof: (proof by contradiction)**
 Assume L is regular.
Example: \(L_1 = \{a^n b^n a^n | n > 0\} \)

\(L_1 \) is not regular.