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With thanks to Kris Hauser for some slides

Checking for Solution Existence

• In some problems, we don’t care about a path, but 
about a configuration that has a desired property

• Instead of a goal, we have a target, which can be a 
set of states that satisfy some property

• We call the set of properties that legal solutions 
must obey constraints

• We call these problems constraint satisfaction 
problems (CSPs)
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CSP Examples

• Satisfying curriculum/major requirements

• Sudoku

• Seating arrangements at a party

• LSAT Questions:
http://www.thelsattrainer.com/sample-lsat-logic-games.html

CSPs
• Specifying CSPs
• One view:  Search with special goal criteria
• CSP definition (general):

– Variables X1,…,Xn

– Variable Xi has domain Di

– Constraints C1,…,Cm

– Solution:  Each variable gets a value from its domain 
such that no constraints violated

• CSP examples…
– http://www.csplib.org/
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CSP Example
Graph coloring:

Western
Australia
(WA)

Northern
Territory
(NT)

Queensland (Q)South
Australia
(SA) New South

Whales (NSW)

Victoria (V)Tasmania (T)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color. (3-coloring)

CSP as a Search Problem
• n variables X1, ..., Xn
• Valid assignment:     {Xi1 ß vi1, ..., Xik ß vik}, 0£ k £ n, 

such that the values vi1, ..., vik satisfy all constraints relating the 
variables Xi1, ..., Xik

• Complete assignment: one where k = n
[if all variable domains have size d, there are O(dn) complete 
assignments]

• States: valid assignments
• Initial state: empty assignment {}, i.e. k = 0
• Successor of a state: 
{Xi1ßvi1, ..., Xikßvik} à {Xi1ßvi1, ..., Xikßvik, Xik+1ßvik+1}
• Goal test: k = n
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Backtracking Search

• Essentially a simplified depth-first 
algorithm using recursion

Backtracking Search
(3 variables)

Assignment = {}
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Backtracking Search
(3 variables)

Assignment = {(X1,v11)}

X1

v11

Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3
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Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2 Assume that no value of X2
leads to a valid assignment

Then, the  search algorithm 
backtracks to the previous variable 
(X3) and tries another value

Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32v31

X2
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Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2
Assume again that no value of 
X2 leads to a valid assignment

The  search algorithm 
backtracks to the previous 
variable (X3) and tries another 
value. But assume that X3 has 
only two possible values. The 
algorithm backtracks to X1

v31

X2

Backtracking Search
(3 variables)

Assignment = {(X1,v12)}

X1

v11

X3

v32

X2

v31

X2

v12
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Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other
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Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3
The algorithm need 
not consider the values
of X3 in the same order 
in this sub-tree
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Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3
Since there are only
three variables, the
assignment is complete

Backtracking Algorithm

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xßv) to A
b. If A is valid then

i. result ß CSP-BACKTRACKING(A)
ii. If result ¹ failure then return result

c. Remove (Xßv) from A
5. Return failure
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Efficiency of CSP-Backtracking 

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xßv) to A
b. If a is valid then

i. result ß CSP-BACKTRACKING(A)
ii. If result ¹ failure then return result

c. Remove (Xßv) from A
5. Return failure

Practical Efficiency 
of CSP Algorithms

• Fundamental trade off
– Time spent ruling out bad/impossible choices
– Time spent searching

• Try to find the sweet spot where you quickly 
rule out bad/unpromising choices

• Compare with sweet spot for heuristics in A*
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CSP Example Revisited
Graph coloring:

Western
Australia
(WA)

Northern
Territory
(NT)

Queensland (Q)South
Australia
(SA) New South

Whales (NSW)

Victoria (V)Tasmania (T)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color. (3-coloring)

Example Contd.

• Variables:  {WA, NT, Q, SA, NSW, V, T}
• Domains:  {R,G,B}
• Constraints:

For WA – NT:{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}

• We have a table for each adjacent pair

• Note: Many possible ways to express constraints
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Forward Checking

• Idea: Assignments to variables immediately rule 
out certain assignments to other variables

• Remove illegal/invalid options from the domains 
other variables

• You probably do this when you play Sudoku!

By Tim Stellmach, CC0, https://commons.wikimedia.org/w/index.php?curid=57831926

Forward Checking in Map 
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW
V

Constraint graph
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Forward Checking in Map 
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW
V

Forward checking removes the value Red of NT and of SA

Forward Checking in Map 
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

T
WA

NT

SA

Q

NSW
V
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Forward Checking in Map 
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

T
WA

NT

SA

Q

NSW
V

Forward Checking in Map 
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Empty set: the current assignment 
{(WA ß R), (Q ß G), (V ß B)}

does not lead to a solution
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Forward Checking (General Form)
Whenever a pair (Xßv) is added to assignment A do:

For each variable Y not in A do:
For every constraint C relating Y to   
the variables in A do:

Remove all values from Y’s domain  
that do not satisfy C 

Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i)  result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure
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Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i)  result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure

No need any more to 
verify that A is valid

Need to pass down the 
updated variable domains

Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i)  result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure
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Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i)  result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure

1) Which variable Xi should be assigned a value next?
à Most-constrained-variable heuristic
à Most-constraining-variable heuristic

2) In which order should its values be assigned?
à Least-constraining-value heuristic

NOTE: Different use of the word “heuristic” from A*
Don’t confuse these two! You will only get questions
about heuristics as functions from states to reals!
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Most-Constrained-Variable Heuristic 
1) Which variable Xi should be assigned a value next?

Select the variable with the smallest 
remaining domain

[Rationale: Minimize the branching factor]

Map Coloring

§ SA’s remaining domain has size 1 (value B remaining)
§ Q’s remaining domain has size 2
§ NSW’s, V’s, and T’s remaining domains have size 3

à Select SA

WA

NT

SA

Q

NSW
V

T

WA

NT

SA
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Most-Constraining-Variable Heuristic 
1) Which variable Xi should be assigned a value next?

Among the variables with the smallest 
remaining domains (ties with respect to the 
most-constrained-variable heuristic), select the 
one that appears in the largest number of 
constraints on variables not in the current 
assignment
[Rationale: Increase future elimination of values, to 
reduce future branching factors]

Map Coloring

§ Before any value has been assigned, all variables 
have a domain of size 3, but SA is involved in more 
constraints (5) than any other variable

à Select SA and assign a value to it (e.g., Blue)

WA

NT

SA

Q

NSW
V

T

SA
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Least-Constraining-Value Heuristic 

2) In which order should X’s values be assigned?

Select the value of X that removes the 
smallest number of values from the domains 
of those variables which are not in the current 
assignment

[Rationale: Since only one value will eventually be 
assigned to X, pick the least-constraining value first, 
since it is the most likely not to lead to an invalid 
assignment]

[Note: Using this heuristic requires performing a forward-
checking step for every value, not just for the selected value]

Map Coloring

§ Q’s domain has two remaining values: Blue and Red
§ Assigning Blue to Q would leave 0 values for SA, while 

assigning Red would leave 1 value

{}

WA

NT

SA

Q

NSW
V

T

WA

NT
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Map Coloring

§ Q’s domain has two remaining values: Blue and Red
§ Assigning Blue to Q would leave 0 value for SA, while 

assigning Red would leave 1 value
à So, assign Red to Q

{Blue}

WA

NT

SA

Q

NSW
V

T

WA

NT

More Advanced Constraint Propagation

• Forward checking can’t discover all possible consequences 
that could lead to failure

• (Doing this in general would require solving the entire 
problem, so we shouldn’t expect a free lunch here.)

• AC3 (see textbook) is an advanced algorithm that is a good 
trade off between efficiency and effectiveness

• But how hard are CSPs, really?
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Digression: NP-Hardness
• NP hardness is not an AI topic
• You will not be tested on it explicitly, but

• It’s important for all computer scientists
• Understanding it will deepen your understanding of AI (and 

other CS) topics
• You will be expected to understand its relevance and use 

for AI problems

• Eat your vegetables; they’re good for you

P and NP
• P and NP are about decision problems
• P is set of problems that can be solved in polynomial time
• NP is a superset of P
• NP is the set of problems that:

– Have solutions which can be verified in polynomial time or, 
equivalently,

– can be solved by a non-deterministic Turing machine in 
polynomial time (OK if you don’t know what that means yet)

• Roughly speaking:
– Problems in P are tractable – can be solved in a reasonable 

amount of time, and Moore’s law helps
– Some problems in NP might not be tractable
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Scaling

Isn’t P big?

• P includes O(n), O(n2), O(n10), O(n100), etc.
• Clearly O(n10) isn’t something to be excited about 

– not practical

• Computer scientists are very clever at making 
things that are in P efficient

• First algorithms for some problems are often 
quite expensive, e.g., O(n3), but research often 
brings this down
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Understanding the class NP

• A class of decision problems (Yes/No)
• Solutions can be verified in polynomial time
• Examples:
– Graph coloring:

– Sortedness:  [1 2 3 4 5 8 7]

WA
NT

Q

SA
NSW

VT

NP-hardness
• Many problems in AI are NP-hard (or worse)
• What does this mean?
• NP-hard = as hard as hardest problems in NP
• Identifying a problem as NP hard means:
– You probably shouldn’t waste time trying to find a 

polynomial time solution
– If you find a polynomial time solution, either
• You have a bug
• Find a place on your shelf for your Turing award

• NP hardness is a major triumph (and failure) for 
computer science theory 
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NP-hardness

• Why it is a failure:
– There is a huge class of problems with no known 

efficient solutions
– We have failed, as a community, to either find 

efficient solutions or prove that none exist

• Why it is a triumph:
– We have a developed a precise language for talking 

about these problems
– We have developed sophisticated ways to reason 

about and categorize the problems we don’t know 
how to solve efficiently

P=NP?

• Biggest open question in CS

• Can NP-hard problems be solved in poly time?
• Probably not, but nobody has been able to prove it yet

• Many false starts, e.g.:
http://www.nytimes.com/2009/10/08/science/Wpolynom.html
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How challenging is “P=NP?”

• Princeton University CS department
• See:  http://www.cs.princeton.edu/general/bricks.php
• Photo from:  http://stuckinthebubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

Hardness of CSPs

• CSPs are known to be NP-hard
(for most reasonable formulations of the problem)

• Bad news: Don’t bother trying to find a general, 
efficient way to solve CSPs

• Good news: Many problems can be solved much faster 
than the worst (exponential) case in practice

• So-so news: Sometimes you just need to run a solver 
and see what happens
– You might get an answer quickly
– You might just wait, and wait, and wait…

http://www.cs.princeton.edu/general/bricks.php


28

CSP Conclusions

• CSPs are a general language for describe a large 
family of problems

• Might require exponential time (worst case)

• Advanced algorithms exist that try to discover 
bad choices quickly, reducing the search space
– Microsoft Solver Foundation
– CPLEX


