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Deep Learning

Ronald Parr
CompSci 370

With thanks to Kris Hauser for some content

Late 1990’s: Neural Networks Hit the Wall

• Recall that a 3 layer network can approximate any 
function arbitrarily closely (caveat: might require 
many, many hidden nodes)

• Q: Why not use big networks for hard problems?
• A: It didn’t work in practice!
– Vanishing gradients
– Not enough training data (local optima, variance)
– Not enough training time (computers too slow to 

handle huge data sets, even if they were available)
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Why Deep?

• Deep learning is a family of techniques for 
building and training large neural networks

• Why deep and not wide?
– Deep sounds better than wide J
– While wide is always possible, deep may require 

fewer nodes to achieve the same result
– May be easier to structure with human intuition: 

think about layers of computation vs. one flat, wide 
computation

Examples of Deep Learning Today
• Object/face recognition in your phone, your browser, 

autonomous vehicles, etc.
• Natural language processing (speech to text, parsing, 

information extraction, machine translation)
• Product recommendations (Netflix, Amazon)
• Fraud detection
• Medical imaging
• Image enhancement or restoration (e.g, Adobe Super 

resolution) https://blog.adobe.com/en/publish/2021/03/10/from-the-acr-
team-super-resolution.html

• Quick Draw: https://quickdraw.withgoogle.com

https://quickdraw.withgoogle.com/
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Vanishing Gradients

• Recall backprop derivation:

• Activation functions often between -1 and +1
• The further you get from the output layer, the 

smaller the gradient gets
• Hard to learn when gradients are noisy and small
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Related Problem: Saturation

• Sigmoid gradient goes to 0 at tails
• Extreme values (saturation) anywhere along 

backprop path causes gradient to vanish
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Summary of the Challenges

• Not enough training data in the 90’s to justify 
the complexity of big networks (recall bias, 
variance trade off)

• Slow to train big networks

• Vanishing gradients, saturation

Summary of Changes

• Massive data available
• Massive computation available

• Faster training methods
• Different training methods
• Different network structures
• Different activation functions
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Estimating the Gradient Efficiently
• Recall: Backpropagation is gradient descent
• Computing exact gradient of the loss function requires

summing over all training samples

• Thought experiment: What if you randomly sample one (or more) data 
point(s) and compute the gradient?
– Called online or stochastic gradient
– Expected value of sampled gradient = true value of gradient
– Sampled gradient = true gradient + noise
– As sample size increases, noise decreases, sampled gradient -> true
– Practical idea: For massive data sets, estimate gradient using sampled 

training points to trade off computation vs. accuracy in gradient calculation
– Possible pitfalls:

• What is the right sampling strategy?
• Does the noise prevent convergence or lead to slower convergence?

Batch/Minibatch Methods

• Find a sweet spot by estimating the gradient 
using a subset of the samples

• Randomly sample subsets of the training data 
and sum gradient computations over all samples 
in the subset

• Take advantage of parallel architectures 
(multicore/GPU)

• Still requires careful selection of step size and 
step size adjustment schedule – art vs. science
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Other Tricks for Speeding Things Up

• Second order methods, e.g., Newton’s method – may be 
computationally intensive in high dimensions

• Conjugate gradient is more computationally efficient, though not 
yet widely used

• Momentum: Use a combination of previous gradients to smooth 
out oscillations

• Line search: (Binary) search in gradient direction to find biggest 
worthwhile step size

• Some methods try to get benefits of second order methods without 
cost (without computing full Hessian), e.g., ADMM

Tricks For Breaking Down Problems

• Build up deep networks by training shallow 
networks, then feeding their output into new 
layers (may help with vanishing gradient and 
other problems) – a form of “pretraining”

• Train the network to solve “easier” problems 
first, then train on harder problems –
curriculum learning, a form of “shaping”
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Convolutional Neural Networks (CNNs)

• Championed by LeCun (1998)

• Originally used for handwriting recognition

• Now used in state of the art systems in many 
computer vision applications

• Well-suited to data with a grid-like structure

Convolutions

• What is a convolution?
• Way to combine two functions, e.g., x and w:

• Discrete version 

𝑠 𝑡 = $𝑥 𝑎 𝑤 𝑡 − 𝑎 𝑑𝑎

𝑠 𝑡 = *𝑥 𝑎 𝑤(𝑡 − 𝑎)

Entire Domain

Example: Suppose s(t) is a decaying average of values of x around t, with w decreasing
as a gets further from t
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Convolution on Grid Example

CHAPTER 9. CONVOLUTIONAL NETWORKS
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 Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 the output to only positions where the kernel lies entirely within the image, called “valid”
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 element of the output tensor is formed by applying the kernel to the corresponding
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 upper-left region of the input tensor.
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Figure 9.1 from Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville

Convolutions on Grids

• For image I
• Convolution “kernel” K:

𝑆 𝑖, 𝑗 = &
!

&
"

𝐼 𝑚, 𝑛 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) =&
!

&
"

𝐼 𝑖 − 𝑚, 𝑗 − 𝑛 𝐾(𝑚, 𝑛)

Examples: 
A convolution can blur/smooth/noise-filter an image by averaging neighboring pixels.
A convolution can also serve as an edge detector
https://en.wikipedia.org/wiki/Kernel_(image_processing)

Figure 9.6 from Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville
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Application to Images & Nets

• Images have huge input space: 1000x1000=1M
• Fully connected layers = huge number of weights, 

slow training

• Convolutional layers reduce connectivity by 
connecting only an mxn window around each pixel

• Can use weight sharing to learn a common set of 
weights so that same convolution is applied 
everywhere (or in multiple places)

Advantages of Convolutions with 
Weight Sharing

• Reduces # of weights that must be learned
– Speeds up learning
– Fewer local optima
– Less risk of overfitting

• Enforces uniformity in what is learned
• Enforces translation invariance – learns the 

same thing for all positions in the image 
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Additional Stages &
Different Activation Functions

• Convolutional stages (may) feed to intermediate stages

• Detectors stages are nonlinear, e.g., ReLU

• Pooling stages summarizing upstream nodes, e.g., average 
(shrinking image), max (thresholding)

Source: wikipedia

ReLU vs. Sigmoid

• ReLU is faster to compute
• Derivative is trivial
• Only saturates on one side

• Worry about non-differentiability at 0?
• Can use sub-gradient Relu in blue
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Example Convolutional Network

INPUT 
28x28

feature maps 
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

OUTPUT
26@1x1

Subsampling

Convolution

Convolution

Subsampling

Convolution

From, Convolutional Networks for Images, Speech, and Time-Series, LeCun & Bengio

N.B.: Subsampling = averaging

Weight sharing results in 2600 weights shared over 100,000 connections.

Why This Works
• ConvNets can use weight sharing to reduce the number of 

parameters learned – mitigates problems with big networks

• Combination of convolutions with shared weights and 
subsampling can be interpreted as learning position and 
scale invariant features

• Final layers combine feature to learn the target function

• Can be viewed as doing
simultaneous feature discovery and classification
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ConvNets in Practice

• Work surprisingly well in many examples, even 
those that aren’t images

• Number of convolutional layers, form of 
pooling and detecting units may be 
application specific – art & science here

Other Tricks

• Convnets and ReLUs tend can can help 
w/vanishing gradient problem, but don’t 
eliminate it

• Residual nets introduce connections across 
layers, which tends to mitigate the vanishing 
gradient problem

• Techniques such as image perturbation and drop 
out reduce overfitting and produce more robust 
solutions
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Putting It all Together
• Why is deep learning succeeding now when neural nets 

lost momentum in the 90’s?
• New architectures (e.g. ConvNets) are better suited to 

(some) learning tasks, reduce # of weights
• Smarter algorithms make better use of data, handle 

noisy gradients better
• Massive amounts of data make overfitting less of a 

concern (but still always a concern)
• Massive amounts of computation make handling 

massive amounts of data possible
• Large and growing bag of tricks to mitigating 

overfitting, vanishing gradient issues

Superficial(?) Limitations

• Deep learning results are 
not easily human-
interpretable

• Computationally intensive
• Combination of art, science, 

rules of thumb
• Can be tricked:
– “Intriguing properties of 

neural networks”, Szegedy et 
al. [2013]
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Beyond Classification

• Deep networks (and other techniques) can be 
used for unsupervised learning

• Example: Autoencoder tries to compress 
inputs to a lower dimensional representation

Recurrent Networks
• Recurrent networks feed (part of) the output of the 

network back to the input

• Why?
– Can learn (hidden) state, e.g., in a hidden Markov model
– Useful for parsing language
– Can learn a program

• LSTM: Variation on RNN that handles long term 
memories better
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Deeper Limitations
• We get impressive results but we don’t always understand why or 

whether we really need all of the data and computation used 

• Hard to explain results and hard to guard against adversarial 
special cases (“Intriguing properties of neural networks”, and 
“Universal adversarial perturbations”)

• Not clear how logic, high level reasoning could be incorporated

• Not clear how to incorporate prior knowledge in a principled way


