CompSci 370
Other Search Paradigms

Ron Parr
Department of Computer Science
Duke University

Searching with Partial Information

(not a focus of this class, but good to be aware of)

e Multiple start state problems

— Several possible initial states
e Contingency problems

— Several possible outcomes for each action
e Exploration problems

— Outcomes of actions not known a priori, must
be discovered by trying them




Example

e |nitial state may not be detectable
— Suppose sensors for a nuclear reactor fail

— Need safe shutdown sequence despite ignorance of
some aspects of state

e This complicates search enormously

e |In the worst case, contingent solution could
cover the entire state space

State Sets

e |dea:
— Maintain a set of candidate states
— Each search node represents a set of states
— Can be hard to manage if state sets get large

e |f states have probabilistic outcomes, we
maintain a probability distribution over states




Searching in Unknown Environments

(not a focus of this class, but good to be aware of)

e What if we don’t know the consequences of actions
before we try them?

e Often called on-line search
e Goal: Minimize competitive ratio
— Actual distance/distance traveled if model known

— Problematic if actions are irreversible
— Problematic if links can have unbounded cost

Optimization
(Not directly a topic of this class, but used later
when we discuss, e.g., neural networks)

e Want to find the “best” state
e Solution is more important than path, but
e Some solutions are better than others

e Interested in minimizing or maximizing some
function of the problem state
— Find a protein with a desirable property
— Optimize circuit layout

e History of search steps not worth the trouble




State Space Landscape

e
N
>

s@
Objective &
. NG
function @Q
value R

ocal Changes

Problem feature

Goal: Find values of problem features
that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

e |[dea: Try to climb up the state space
landscape (often in axis-parallel directions) to
find a setting of the problem features with
high value.

e Approaches:

— Steepest ascent
— Stochastic — randomly pick one of the good ones
— First choice

e This is a greedy procedure




Limitations of Hill Climbing

e Local maxima

e Ridges — direction of ascent is at 45 degree
angle to any of the local changes

e Plateaux — flat expanses

Getting Unstuck

e Random restarts

e Simulated annealing for minimization (maximization)
— Take uphill (downhill) moves with small probability
— Probability of moving uphill (downhill) decreases with
e Number of iterations
¢ Steepness of uphill (downhill) move
— If system is “cooled” slowly enough, will find global
optimum w.p. 1
— Motivated by the annealing of metals and glass, where
annealing reduces potential energy stored in

chemical/physical structures, making substance more
ductile and less brittle




Genetic Algorithms

GAs run hot and cold (cold now, hotish in 90’s)
Biological metaphors to motivate search

Organism is a word from a finite alphabet
(organisms = states)

Fitness of organism measures its performance on task
(fitness = objective)
Uses multiple organisms (parallel search)

Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:
Randomly select organisms for “reproduction” in accordance
with their fitness. More “fit” individuals are more likely to

reproduce.

Reproduction is sexual and involves crossover:

010

00010>

Offspring: 110011110

Organism 1:

Organism 2:




Is this a good idea?

Has worked well in some examples

Can be very brittle

— Representations must be carefully engineered

— Sensitive to mutation rate

— Sensitive to details of crossover mechanism

For the same amount of work, stochastic variants of hill
climbing sometimes do better

Hard to analyze; needs more rigorous study

Compare with neural network hype cycle

Continuous Spaces

In continuous spaces, we don’t need to “probe” to find
the values of local changes

If we have a closed-form expression for our objective
function, we can use the calculus

Suppose objective function is: FXLY 15XV, X5,Y3)
Gradient tells us direction and steepness of change

of of of of of of
ox, dy, dx, dy, ox, dy,

Vf =(




Gradient Descent in Continuous Space

Minimize y=f(x)
Move in opposite direction of
derivative df/dx(x)

df/dx(x;)

Gradient Descent in Continuous Space

Minimize y=f(x)
Move in opposite direction of
derivative df/dx(x)

df/dx(x;)




Gradient Descent in Continuous Space

e Minimize y=f(x)
* Move in opposite direction of
derivative df/dx(x)

Gradient Descent in Continuous Space

e Minimize y=f(x)
* Move in opposite direction of
derivative df/dx(x)




Gradient Descent in Continuous Space

e Minimize y=f(x)
* Move in opposite direction of

derivative df/dx(x)
y

df/dx(xs)

Gradient Descent in Continuous Space

e Minimize y=f(x)
* Move in opposite direction of

derivative df/dx(x)
Yy

o0 o @0 X
X1 X X3

10



Gradient: analogue of derivative in multivariate
functions f(xy,...,x,)

Direction that you would move x,,...,x,, to make
the steepest increase in f

f

X1

Algorithm for Gradient Descent

¢ Input: continuous objective function f, initial point
x°=(x1%,...,x.0)
e Fort=0,...,,N-1:
Compute gradient vector gt=(0f/0x,(xY),...,0f/Ox,(xt))

If the length of gt is small enough [convergence]
Return xt

Pick a step size at
Let xt*1= xt -atgt
“Industrial strength” optimization software uses
more sophisticated techniques to use higher
derivatives, handle constraints, deal with particular
function classes, etc.

11



GD works well

GD works poorly

(though variants
of GD have proven
successful in deep
neural networks)

Search Conclusions

e Search = most general purpose technique in existence
e Everything can be formulated as a search problem, from
sorting to curing cancer

e Search techniques have been specialized to match
different types of problems

* Be a smart consumer of search:
— Specifying your problem clearly
— Find the technique that matches your problem

12



