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Searching with Partial Information

(not a focus of this class, but good to be aware of)

e Multiple start state problems

— Several possible initial states
e Contingency problems

— Several possible outcomes for each action
e Exploration problems

— Outcomes of actions not known a priori, must
be discovered by trying them




Example

e |nitial state may not be detectable
— Suppose sensors for a nuclear reactor fail

— Need safe shutdown sequence despite ignorance of
some aspects of state

e This complicates search enormously

e |In the worst case, contingent solution could
cover the entire state space

State Sets

e |dea:
— Maintain a set of candidate states
— Each search node represents a set of states
— Can be hard to manage if state sets get large

e |f states have probabilistic outcomes, we
maintain a probability distribution over states




Searching in Unknown Environments

(not a focus of this class, but good to be aware of)

e What if we don’t know the consequences of actions
before we try them?

e Often called on-line search
e Goal: Minimize competitive ratio
— Actual distance/distance traveled if model known

— Problematic if actions are irreversible
— Problematic if links can have unbounded cost

Optimization
(Not directly a topic of this class, but used later
when we discuss, e.g., neural networks)

e Want to find the “best” state
e Solution is more important than path, but
e Some solutions are better than others

e Interested in minimizing or maximizing some
function of the problem state
— Find a protein with a desirable property
— Optimize circuit layout

e History of search steps not worth the trouble




State Space Landscape
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Problem feature

Goal: Find values of problem features
that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

e |[dea: Try to climb up the state space
landscape (often in axis-parallel directions) to
find a setting of the problem features with
high value.

e Approaches:

— Steepest ascent
— Stochastic — randomly pick one of the good ones
— First choice

e This is a greedy procedure




Limitations of Hill Climbing

e Local maxima

e Ridges — direction of ascent is at 45 degree
angle to any of the local changes

e Plateaux — flat expanses

Getting Unstuck

e Random restarts

e Simulated annealing for minimization (maximization)
— Take uphill (downhill) moves with small probability
— Probability of moving uphill (downhill) decreases with
e Number of iterations
¢ Steepness of uphill (downhill) move
— If system is “cooled” slowly enough, will find global
optimum w.p. 1
— Motivated by the annealing of metals and glass, where
annealing reduces potential energy stored in

chemical/physical structures, making substance more
ductile and less brittle




Genetic Algorithms

GAs run hot and cold (cold now, hotish in 90’s)
Biological metaphors to motivate search

Organism is a word from a finite alphabet
(organisms = states)

Fitness of organism measures its performance on task
(fitness = objective)
Uses multiple organisms (parallel search)

Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:
Randomly select organisms for “reproduction” in accordance
with their fitness. More “fit” individuals are more likely to

reproduce.

Reproduction is sexual and involves crossover:
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Is this a good idea?

Has worked well in some examples

Can be very brittle

— Representations must be carefully engineered

— Sensitive to mutation rate

— Sensitive to details of crossover mechanism

For the same amount of work, stochastic variants of hill
climbing sometimes do better

Hard to analyze; needs more rigorous study

Compare with neural network hype cycle

Continuous Spaces

In continuous spaces, we don’t need to “probe” to find
the values of local changes

If we have a closed-form expression for our objective
function, we can use the calculus

Suppose objective function is: FXLY 15XV, X5,Y3)
Gradient tells us direction and steepness of change
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Gradient Descent in Continuous Space

Minimize y=f(x)
Move in opposite direction of
derivative df/dx(x)
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Gradient: analogue of derivative in multivariate
functions f(xy,...,x,)

Direction that you would move x,,...,x,, to make
the steepest increase in f

f

X1

Algorithm for Gradient Descent

¢ Input: continuous objective function f, initial point
x°=(x1%,...,x.0)
e Fort=0,...,,N-1:
Compute gradient vector gt=(0f/0x,(xY),...,0f/Ox,(xt))

If the length of gt is small enough [convergence]
Return xt

Pick a step size at
Let xt*1= xt -atgt
“Industrial strength” optimization software uses
more sophisticated techniques to use higher
derivatives, handle constraints, deal with particular
function classes, etc.
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GD works well

GD works poorly

(though variants
of GD have proven
successful in deep
neural networks)

Search Conclusions

e Search = most general purpose technique in existence
e Everything can be formulated as a search problem, from
sorting to curing cancer

e Search techniques have been specialized to match
different types of problems

* Be a smart consumer of search:
— Specifying your problem clearly
— Find the technique that matches your problem
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