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RL Highlights

Everybody likes to learn from experience

Use ML techniques to generalize from relatively
small amounts of experience

Some notable successes:

— Backgammon, Go, Starcraft

— Flying a helicopter upside down
— Dogfighting in realistic simulators
— Atari Games From Andrew Ng's home page

Sutton & Barto RL Book is one of the most cited
references in CS (~46K citations as of 9/21)




Comparison w/Other Kinds of Learning

e Learning often viewed as:
— Classification (supervised), or
— Model learning (unsupervised)

e RLis between these (delayed signal)

e What the last thing that happens before an
accident? 3

Source: By Damnsoft 09 at English Wikipedia, CC BY 3.0, hitps:/commons.wikimedia.org/w/i

Why We Need RL

e Where do we get transition probabilities?

e How do we store them?
* Big problems have big models

¢ Model size is quadratic in state space size

e Where do we get the reward function?




RL Framework

Learn by “trial and error”
e No assumptions about model
e No assumptions about reward function

Assumes:

— True state is known at all times
— Immediate reward is known

— Discount is known

RL for Our Game Show

* Problem: We don’t know probability of answering
correctly

e Solution: : ,
. Source: Wikipedia page
— Buy the home version of the game For “Who Wants to be a Millionaire”

— Practice on the home game to refine our strategy

— Deploy strategy when we play the real game




Model Learning Approach

e Learn model, solve

e How to learn a model:
— Take action a in state s, observe s’
— Take action a in state s, n times
— Observe s’ m times
— P(s’|s,a) =m/n
— Fill in transition matrix for each action
— Compute avg. reward for each state

e Solve learned model as an MDP (previous lecture)

Limitations of Model Learning

Partitions learning, solution into two phases

Model may be large
— Hard to visit every state lots of times
— Note: Can’t completely get around this problem...

Model storage is expensive

Model manipulation is expensive




First steps: Passive RL

e Observe execution trials of an agent that acts
according to some unobserved policy

¢ Problem: estimate the value function V™

e Important alternate view of V*(s) calculation

— Recall V*(s) is the expected, discounted value of
following policy m from state s

— Vn(s) = EZ [yt R(S,)] where S, is the random variable
denoting the distribution of states at time t]

Direct Utility Estimation
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1. Observe trials ti=(sy,a,M,s,@ r @ 3.0 s.0)r.0) fori=1,..,n
2. For each state seS:
3. Find all trials t0) that pass through s at, e.g., time step k
4. Compute subsequent value VH0)(s)=Z,_ 1o y* 1
5. Set V*(s) to the average observed values

Limitations: Clunky, learns only when an end state is reached




Incremental (“Online”) Function Learning

e Data is streaming into learner
X,Y15 o XnYn Vi = F(xi)

e Observes x,,; and must make prediction for
next time step y,.q

e “Batch” approach:
— Store all data at step n

— Use your learner of choice on all data up to time
n, predict for time n+1

e Can we be more efficient? (space & memory)

Example: Mean Estimation

e yvi=0+errorterm (constant-no x’s)
e Current estimate 0,=1/n X1 Vi

05
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Example: Mean Estimation

e vi=0+errorterm (constant-no x’s)
e Current estimate 0,=1/nX_1 ,V;

@
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* Oh = 1/(n+1) Lict.ne1 Yi
= 1/(n+1) (yn+1 +2iz1.n yi)
= 1/(n+1) (yn+1 +n en)
=1/(n+1) (Yns1 + (n+1) 6, — 6,)
=0 + 1/(n+1) (Y1 - 6n)

Example: Mean Estimation

e vi=0+errorterm (constant-no x’s)
e Current estimate 0,=1/n 2.1 Vi

65 ‘ 66=5/665+1/6y6

* Oh = 1/(n+1) Lict.ne1 Yi
= 1/(n+1) (Yne1 + Zic1n Vi)
= 1/(n+1) (yn+1 +n en)
= 1/(n+1) (yn+1 + (n+1) 6n - en)
= 0n + 1/(n+1) (Yne1 - 0n)




Example: Mean Estimation

* en+1 = en + 1/(n+1) (yn+1 - en)
e Only need to storen, 0,

@
0, | 05 =5/6 0 + 1/6 y¢

Learning Rates

e |nfact, 0,,1 =0, + a, (y..1 - 0,) converges to
the mean for any a, such that:
—a,—>0asn— oo
— X0, > ®©
- 2a,2—>C<x®

e O(1/n) does the trick

e If o, is close to 1, then the estimate shifts
strongly to recent data; close to 0, and the
old estimate is preserved




Learning Rates in RL in Practice

e Maintain a per-state count NJs]
e Learning rate is function of N[s], ot(N[s])
e Sufficient to satisfy theory: a(N[s])=1/N(s)
e Often viewed as too slow
— o drops quickly
— Convergence is slow
e |n practice, often a floor on, a, e.g., a = 0.01
e Floor leads to faster learning, but less stability

Online Implementation
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1. Store counts N[s] and estimated values V*(s) (initialize to O, typically)
2. After atrial t, for each state s in the trial: Value of s in trial t

3, Set N[S] «— N[S]+1 /(from discounted sum)

4. Adjust value V™(s) < V™(s)+a(N[s])(Vt(s)-V7(s)) o(N[s])=1/N(s)

Doesn’t require storing all trajectories, but...
Simple averaging
Slow learning, because Bellman equation is not used
to pass knowledge between adjacent states




oral Difference Learning
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1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
Set N[s] <~ N[s]+1

3.

E/m(S) =R(s)+vy P(s'ls, a)Vt(S’)}

sreSucc(s,a)

Online estimation
of mean over value
next states

4. Adjust value V(s) <—{vn(s)+a(N[s])(r+yvn(s')-vn(s))}

Instead of averaging at the level of trajectories...
Average at the level of states

oral Difference Learning
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1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):

3.
4.

Set N[s] < N[s]+1
Adjust value V(s) <— V*(s)+a(N[s])(r+yV™(s’)-V(s))
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Temporal Difference Learning
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1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning
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1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))
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Temporal Difference Learning
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1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning
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from start to +1

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

After a second trajectory
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Temporal Difference Learning
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After a third trajectory
from start to +1

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

1.
2.

Temporal Difference Learning

3 | 023-10.62-1042 | +1 With learning rate
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Our luck starts to run
out on the fourth trajectory

1 2 3 4

Store counts N[s] and estimated values V*(s)
For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))
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Temporal Difference Learning

3 [023] 062|042 | +1 With learning rate
’ a=0.5
2 |-0.03 019 | -1

But we recover...
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1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning
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...and reach the goal!
1 |-008| O 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

For any s, distribution of s’ approaches P(s’|s,7(s))
Uses relationships between adjacent states to adjust
utilities toward equilibrium

Unlike direct estimation, learns before trial is terminated
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Using TD for Control

e Recall value iteration:
V™*(s) = max_ R(s,a) + )/E P(s'ls,a)V'(s")
e Why not pick the maximizing a and then do:

V(s)=V(s)+a(N@)(r+ 7V (s')=V(s))

— s' is the observed next state after taking action a

What breaks?

e Action selection

— How do we pick a?

— Need to P(s’|s,a), but the reason why we’re doing RL is
that we don’t know this!

e Even if we magically knew the best action:
— Can only learn the value of the policy we are following

— If initial guess for V suggests a stupid policy, we’ll never
learn otherwise
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Q-Values

e Learning V is not enough for action selection
because a transition model is needed

e Solution: learn Q-values: Q(s,a) is the utility of
choosing action a in state s

e “Shift” or “split” Bellman equation
— V(s) = max, Q(s,a)
— Q(s,a) =R(s) +y Zs P(s’|s,a) maxy Q(s,a’)

e So far, everything is the same... but what about
the learning rule?

Q-learning Update

o Recall TD:
« Update: V(s) < V(s)+a(N[s])(r+yV(s')-V(s))
. Use P to pick actions? a <— arg max, Zs P(s’|s,a)V(s’)
o Q-Learning:
« Update: Q(s,a) < Q(s,a)+a(N[s,a])(r+y max,Q(s’,a’)-Q(s,a))
. Select action: a «— arg max, Q(s,a)
- Key difference: average over P(s’|s,a) is “baked in” to
the Q function

- Q-learning is therefore a model-free learner
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Q-Learning Demo
(see video from Zoom)

e Keyboard controlled Q-learning agent using robot grid world from
R&N (and previous MDP slides)
¢ Differences:
— Discount of 0.9
— No step cost (previously -0.04)
— Bad state has value 0 (previously -1)
¢ How to think of terminal states:
— Make transition to another state (absorbing state) with value that is always 0

— Problem then resets to start (no transition from absorbing state to start)

Q-learning vs. TD-learning

e TD converges to value of policy you are following

e Q-learning converges to values of optimal policy
independent of of whatever policy you follow
during learning!

e Caveats:

— Converges in limit, assuming all states are visited
infinitely often

— In case of Q-learning, all states and actions must be
tried infinitely often

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical
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Brief Comments on
Learning from Demonstration

e LfD is a powerful method to convey human
expertise to (ro)bots

e Useful for imitating human policies

e Less useful for surpassing human ability
(but can smooth out noise in human demos)

e Used, e.g., for acrobatic helicopter flight

Advanced (but unavoidable) Topics

e Exploration vs. Exploitation

e Value function approximation

18



Exploration vs. Exploitation

e Greedy strategy purely exploits its current
knowledge

— The quality of this knowledge improves only for those
states that the agent observes often

e A good learner must perform exploration in order
to improve its knowledge about states that are
not often observed

— But pure exploration is useless (and costly) if it is never
exploited

Restaurant Problem

19



Exploration vs. Exploitation
in Theory and Practice

e Can assign an “exploration bonus” to parts of the world
(or state-action combinations) you haven’t experienced
much

— Versions of this are provably efficient, e.g., R-Max
(will eventually learn the optimal policy requiring
polynomial effort in size of problem)

— Works for small state spaces

e In practice e-greedy action selection is used most often
— Choose greedy action w.p. 1-¢

— Choose random action w.p. €

Value Function Representation

e Fundamental problem remains unsolved:
— TD/Q learning solves model-learning problem, but
— Large models still have large value functions
— Too expensive to store these functions

— Impossible to visit every state in large models

e Function approximation
— Use machine learning methods to generalize
— Avoid the need to visit every state




Function Approximation

e General problem: Learn function f(s)
— Linear regression
— Neural networks
— State aggregation (violates Markov property)

e |dea: Approximate f(s) with g(s;w)
— gis some easily computable function of s and w
— Try to find w that minimizes the errorin g

Updates with Approximation

e Recall regular TD update:

V(s) < V(s)+a(N[s])(r+yV(s')-V(s))

e With function approximation:
V(s)=V(s;w) Vector

/ operations
e Update:

W =w +ale+ W (s's w) =V (s; W)V V (s;w)

Neural networks are a special case of this.
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Linear Regression Review

Define a set of basis functions (vectors)
?,(5), 9, (5)-..0, (5)
e Approximate f with a weigkhted combination of these
g(s;w) = Z,W_,co_, (5)
=

Example: Space of quadratic functions:

0 (s)=Lo,(s)=5,0,(s) = s

Orthogonal projection minimizes SSE

For linear value functions

e Gradient is trivial:
k
Vs;w) =2 wp,(s)
j=l1

v, V(s;w)=0,(5)

Individual
e Update is trivial: / components
i+l i ' 3 .
w, o =w, +a(r+yV(ssw) =V (s;w)e,(s)
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Properties of approximate RL

e Exact case (tabular representation) = special case
¢ Can be combined with Q-learning

e Convergence not guaranteed
— Policy evaluation with linear function approximation converges if
samples are drawn “on policy”
— In general, convergence is not guaranteed
e Chasing a moving target
e Errors can compound

e Success has traditionally required very carefully chosen features

e Deepmind has recently had success using no feature engineering but
lots of training data

How’d They Do That???

e Backgammon (Tesauro)
— Neural network value function approximation

TD sufficient (known model)

Carefully selected inputs to neural network

About 1 million games played against self

e Atari games (DeepMind)
— Used convolutional neural network for Q-functions
— Days of play time per game

e Helicopter (Ng et al.)
— Learning from expert demonstrations

— Constrained policy space
— Trained on a simulator
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Conclusions
Reinforcement learning solves an MDP
Converges for exact value function representation
Can be combined with approximation methods

Good results require good features and/or lots of data
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