
1

Reinforcement Learning

Ron Parr
CompSci 370

Department of Computer Science
Duke University

With thanks to Kris Hauser for some content

RL Highlights

• Everybody likes to learn from experience
• Use ML techniques to generalize from relatively

small amounts of experience

• Some notable successes:
– Backgammon, Go, Starcraft
– Flying a helicopter upside down
– Dogfighting in realistic simulators
– Atari Games

• Sutton & Barto RL Book is one of the most cited
references in CS (~46K citations as of 9/21)

From Andrew Ng’s home page

2

Comparison w/Other Kinds of Learning

• Learning often viewed as:
– Classification (supervised), or
– Model learning (unsupervised)

• RL is between these (delayed signal)

• What the last thing that happens before an
accident?

Source: By Damnsoft 09 at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=11802152

Why We Need RL

• Where do we get transition probabilities?

• How do we store them?
• Big problems have big models
• Model size is quadratic in state space size

• Where do we get the reward function?

3

RL Framework

• Learn by “trial and error”
• No assumptions about model
• No assumptions about reward function
• Assumes:

– True state is known at all times
– Immediate reward is known
– Discount is known

RL for Our Game Show

• Problem: We don’t know probability of answering
correctly

• Solution:
– Buy the home version of the game
– Practice on the home game to refine our strategy
– Deploy strategy when we play the real game

Source: Wikipedia page
For “Who Wants to be a Millionaire”

4

Model Learning Approach

• Learn model, solve
• How to learn a model:

– Take action a in state s, observe s’
– Take action a in state s, n times
– Observe s’ m times
– P(s’|s,a) = m/n
– Fill in transition matrix for each action
– Compute avg. reward for each state

• Solve learned model as an MDP (previous lecture)

Limitations of Model Learning

• Partitions learning, solution into two phases
• Model may be large

– Hard to visit every state lots of times
– Note: Can’t completely get around this problem…

• Model storage is expensive
• Model manipulation is expensive

5

First steps: Passive RL

• Observe execution trials of an agent that acts
according to some unobserved policy p

• Problem: estimate the value function Vp

• Important alternate view of Vp(s) calculation
– Recall Vp(s) is the expected, discounted value of

following policy p from state s
– Vp(s) = ES St[gt R(St)] where St is the random variable

denoting the distribution of states at time t]

Direct Utility Estimation

1. Observe trials t(i)=(s0
(i),a1

(i),s1
(i),r1

(i),…,ati
(i),sti

(i),rti
(i)) for i=1,…,n

2. For each state sÎS:
3. Find all trials t(i) that pass through s at, e.g., time step k
4. Compute subsequent value Vt(i)(s)=St=k to ti gt-k rt

(i)

5. Set Vp(s) to the average observed values

3

2

1

4321

+1

-10

0000

0

00 0 3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92

Limitations: Clunky, learns only when an end state is reached

6

Incremental (“Online”) Function Learning

• Data is streaming into learner
x1,y1, …, xn,yn yi = f(xi)

• Observes xn+1 and must make prediction for
next time step yn+1

• “Batch” approach:
– Store all data at step n
– Use your learner of choice on all data up to time

n, predict for time n+1

• Can we be more efficient? (space & memory)

Example: Mean Estimation

• yi = q + error term (constant - no x’s)
• Current estimate qn = 1/n Si=1…n yi

• qn+1 = 1/(n+1) Si=1…n+1 yi
= 1/(n+1) (yn+1 + Si=1…n yi)
= 1/(n+1) (yn+1 + n qn)
= 1/(n+1) (yn+1 + (n+1) qn - qn)
= qn + 1/(n+1) (yn+1 - qn)

q5

7

Example: Mean Estimation

• yi = q + error term (constant - no x’s)
• Current estimate qn = 1/n Si=1…n yi

• qn+1 = 1/(n+1) Si=1…n+1 yi
= 1/(n+1) (yn+1 + Si=1…n yi)
= 1/(n+1) (yn+1 + n qn)
= 1/(n+1) (yn+1 + (n+1) qn - qn)
= qn + 1/(n+1) (yn+1 - qn)

q5 y6

Example: Mean Estimation

• yi = q + error term (constant - no x’s)
• Current estimate qn = 1/n Si=1…n yi

• qn+1 = 1/(n+1) Si=1…n+1 yi
= 1/(n+1) (yn+1 + Si=1…n yi)
= 1/(n+1) (yn+1 + n qn)
= 1/(n+1) (yn+1 + (n+1) qn - qn)
= qn + 1/(n+1) (yn+1 - qn)

q5 q6 = 5/6 q5 + 1/6 y6

8

Example: Mean Estimation

• qn+1 = qn + 1/(n+1) (yn+1 - qn)
• Only need to store n, qn

q5 q6 = 5/6 q5 + 1/6 y6

Learning Rates

• In fact, qn+1 = qn + an (yn+1 - qn) converges to
the mean for any an such that:
– an ® 0 as n ®¥
– San ®¥
– San

2 ® C < ¥

• O(1/n) does the trick
• If an is close to 1, then the estimate shifts

strongly to recent data; close to 0, and the
old estimate is preserved

9

Learning Rates in RL in Practice

• Maintain a per-state count N[s]
• Learning rate is function of N[s], a(N[s])
• Sufficient to satisfy theory: a(N[s])=1/N(s)
• Often viewed as too slow
– a drops quickly
– Convergence is slow

• In practice, often a floor on, a, e.g., a = 0.01
• Floor leads to faster learning, but less stability

Online Implementation

1. Store counts N[s] and estimated values Vp(s) (initialize to 0, typically)
2. After a trial t, for each state s in the trial:

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(Vt(s)-Vp(s))

3

2

1

4321

+1

-10

0000

0

00 0 3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92

• Doesn’t require storing all trajectories, but…
• Simple averaging
• Slow learning, because Bellman equation is not used

to pass knowledge between adjacent states

a(N[s])=1/N(s)

Value of s in trial t
(from discounted sum)

10

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

0000

0

00 0

• Instead of averaging at the level of trajectories…
• Average at the level of states

Online estimation
of mean over value
next states

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

0000

0

00 0

11

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.02

0

00 0 With learning rate
a=0.5

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.02

-0.02

-0.02-0.02 0 With learning rate
a=0.5

12

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.02

-0.02

-0.02-0.02 0.48 With learning rate
a=0.5

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.04

-0.04

0.21-0.04 0.72 With learning rate
a=0.5

After a second trajectory
from start to +1

13

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.06

-0.06

0.440.07 0.84 With learning rate
a=0.5

After a third trajectory
from start to +1

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.08

-0.03

0.620.23 0.42 With learning rate
a=0.5

Our luck starts to run
out on the fourth trajectory

14

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10.19

000-0.08

-0.03

0.620.23 0.42 With learning rate
a=0.5

But we recover…

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10.19

000-0.08

-0.03

0.620.23 0.69

• For any s, distribution of s’ approaches P(s’|s,p(s))
• Uses relationships between adjacent states to adjust

utilities toward equilibrium
• Unlike direct estimation, learns before trial is terminated

With learning rate
a=0.5

…and reach the goal!

15

Using TD for Control

• Recall value iteration:

• Why not pick the maximizing a and then do:

– s' is the observed next state after taking action a

!!!!

€

V i+1(s) =maxa R(s,a) +γ P(s' | s,a)V i(s')
s'
∑

))()'())((()()(sVsVrsNsVsV -++= ga

What breaks?

• Action selection
– How do we pick a?
– Need to P(s’|s,a), but the reason why we’re doing RL is

that we don’t know this!

• Even if we magically knew the best action:
– Can only learn the value of the policy we are following
– If initial guess for V suggests a stupid policy, we’ll never

learn otherwise

16

Q-Values

• Learning V is not enough for action selection
because a transition model is needed

• Solution: learn Q-values: Q(s,a) is the utility of
choosing action a in state s

• “Shift” or “split” Bellman equation
– V(s) = maxa Q(s,a)
– Q(s,a) = R(s) + g Ss’ P(s’|s,a) maxa’ Q(s’,a’)

• So far, everything is the same… but what about
the learning rule?

Q-learning Update

¢ Recall TD:
• Update: V(s) ¬ V(s)+a(N[s])(r+gV(s’)-V(s))
• Use P to pick actions? a ¬ arg maxa Ss’ P(s’|s,a)V(s’))

¢ Q-Learning:
• Update: Q(s,a) ¬ Q(s,a)+a(N[s,a])(r+g maxa’Q(s’,a’)-Q(s,a))
• Select action: a ¬ arg maxa f(Q(s,a))

– Key difference: average over P(s’|s,a) is “baked in” to
the Q function

– Q-learning is therefore a model-free learner

17

Q-Learning Demo
(see video from Zoom)

• Keyboard controlled Q-learning agent using robot grid world from
R&N (and previous MDP slides)

• Differences:
– Discount of 0.9
– No step cost (previously -0.04)
– Bad state has value 0 (previously -1)

• How to think of terminal states:
– Make transition to another state (absorbing state) with value that is always 0
– Problem then resets to start (no transition from absorbing state to start)

Q-learning vs. TD-learning

• TD converges to value of policy you are following
• Q-learning converges to values of optimal policy

independent of of whatever policy you follow
during learning!

• Caveats:
– Converges in limit, assuming all states are visited

infinitely often
– In case of Q-learning, all states and actions must be

tried infinitely often

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical

18

Brief Comments on
Learning from Demonstration

• LfD is a powerful method to convey human
expertise to (ro)bots

• Useful for imitating human policies

• Less useful for surpassing human ability
(but can smooth out noise in human demos)

• Used, e.g., for acrobatic helicopter flight

Advanced (but unavoidable) Topics

• Exploration vs. Exploitation

• Value function approximation

19

Exploration vs. Exploitation

• Greedy strategy purely exploits its current
knowledge
– The quality of this knowledge improves only for those

states that the agent observes often

• A good learner must perform exploration in order
to improve its knowledge about states that are
not often observed
– But pure exploration is useless (and costly) if it is never

exploited

Restaurant Problem

20

Exploration vs. Exploitation
in Theory and Practice

• Can assign an “exploration bonus” to parts of the world
(or state-action combinations) you haven’t experienced
much
– Versions of this are provably efficient, e.g., R-Max

(will eventually learn the optimal policy requiring
polynomial effort in size of problem)

– Works for small state spaces

• In practice e-greedy action selection is used most often
– Choose greedy action w.p. 1-e
– Choose random action w.p. e

Value Function Representation

• Fundamental problem remains unsolved:
– TD/Q learning solves model-learning problem, but
– Large models still have large value functions
– Too expensive to store these functions
– Impossible to visit every state in large models

• Function approximation
– Use machine learning methods to generalize
– Avoid the need to visit every state

21

Function Approximation

• General problem: Learn function f(s)
– Linear regression
– Neural networks
– State aggregation (violates Markov property)

• Idea: Approximate f(s) with g(s;w)
– g is some easily computable function of s and w
– Try to find w that minimizes the error in g

Updates with Approximation

• Recall regular TD update:

• With function approximation:

• Update:
);()(wsVsV » Vector

operations

);());();'((1 wsVwsVwsVrww w
ii Ñ-++=+ ga

Neural networks are a special case of this.

V(s) ¬ V(s)+a(N[s])(r+gV(s’)-V(s))

22

Linear Regression Review
• Define a set of basis functions (vectors)

• Approximate f with a weighted combination of these

• Example: Space of quadratic functions:

• Orthogonal projection minimizes SSE

)()...(),(21 sss kjjj

å
=

=
k

j
jj swwsg

1
)();(j

2
321)(,)(,1)(sssss === jjj

For linear value functions

• Gradient is trivial:

• Update is trivial:

å
=

=
k

j
jj swwsV

1
)();(j

Individual
components

)();(swsV jwj
j=Ñ

)());();'((1 swsVwsVrww j
i
j

i
j jga -++=+

23

Properties of approximate RL
• Exact case (tabular representation) = special case
• Can be combined with Q-learning

• Convergence not guaranteed
– Policy evaluation with linear function approximation converges if

samples are drawn “on policy”
– In general, convergence is not guaranteed

• Chasing a moving target
• Errors can compound

• Success has traditionally required very carefully chosen features
• Deepmind has recently had success using no feature engineering but

lots of training data

How’d They Do That???

• Backgammon (Tesauro)
– Neural network value function approximation
– TD sufficient (known model)
– Carefully selected inputs to neural network
– About 1 million games played against self

• Atari games (DeepMind)
– Used convolutional neural network for Q-functions
– Days of play time per game

• Helicopter (Ng et al.)
– Learning from expert demonstrations
– Constrained policy space
– Trained on a simulator

24

Conclusions

• Reinforcement learning solves an MDP

• Converges for exact value function representation

• Can be combined with approximation methods

• Good results require good features and/or lots of data

