Reinforcement Learning

Ron Parr
CompSci 370
Department of Computer Science
Duke University

With thanks to Kris Hauser for some content

RL Highlights

Everybody likes to learn from experience

Use ML techniques to generalize from relatively
small amounts of experience

Some notable successes:

— Backgammon, Go, Starcraft

— Flying a helicopter upside down
— Dogfighting in realistic simulators
— Atari Games From Andrew Ng's home page

Sutton & Barto RL Book is one of the most cited
references in CS (~46K citations as of 9/21)

Comparison w/Other Kinds of Learning

e Learning often viewed as:
— Classification (supervised), or
— Model learning (unsupervised)

e RLis between these (delayed signal)

e What the last thing that happens before an
accident? 3

Source: By Damnsoft 09 at English Wikipedia, CC BY 3.0, hitps:/commons.wikimedia.org/w/i

Why We Need RL

e Where do we get transition probabilities?

e How do we store them?
* Big problems have big models

¢ Model size is quadratic in state space size

e Where do we get the reward function?

RL Framework

Learn by “trial and error”
e No assumptions about model
e No assumptions about reward function

Assumes:

— True state is known at all times
— Immediate reward is known

— Discount is known

RL for Our Game Show

* Problem: We don’t know probability of answering
correctly

e Solution: : ,
. Source: Wikipedia page
— Buy the home version of the game For “Who Wants to be a Millionaire”

— Practice on the home game to refine our strategy

— Deploy strategy when we play the real game

Model Learning Approach

e Learn model, solve

e How to learn a model:
— Take action a in state s, observe s’
— Take action a in state s, n times
— Observe s’ m times
— P(s’|s,a) =m/n
— Fill in transition matrix for each action
— Compute avg. reward for each state

e Solve learned model as an MDP (previous lecture)

Limitations of Model Learning

Partitions learning, solution into two phases

Model may be large
— Hard to visit every state lots of times
— Note: Can’t completely get around this problem...

Model storage is expensive

Model manipulation is expensive

First steps: Passive RL

e Observe execution trials of an agent that acts
according to some unobserved policy

¢ Problem: estimate the value function V™

e Important alternate view of V*(s) calculation

— Recall V*(s) is the expected, discounted value of
following policy m from state s

— Vn(s) = EZ [yt R(S,)] where S, is the random variable
denoting the distribution of states at time t]

Direct Utility Estimation

3 o0 Hr 3 10.81/0.87|0.92| +1
1 & 0 i 00 110.71|0.66/0.61]0.39
1 2 3 4 1 2 3 4

1. Observe trials ti=(sy,a,M,s,@ r @ 3.0 s.0)r.0) fori=1,..,n
2. For each state seS:
3. Find all trials t0) that pass through s at, e.g., time step k
4. Compute subsequent value VH0)(s)=Z,_ 1o y* 1
5. Set V*(s) to the average observed values

Limitations: Clunky, learns only when an end state is reached

Incremental (“Online”) Function Learning

e Data is streaming into learner
X,Y15 o XnYn Vi = F(xi)

e Observes x,,; and must make prediction for
next time step y,.q

e “Batch” approach:
— Store all data at step n

— Use your learner of choice on all data up to time
n, predict for time n+1

e Can we be more efficient? (space & memory)

Example: Mean Estimation

e yvi=0+errorterm (constant-no x’s)
e Current estimate 0,=1/n X1 Vi

05

* 01 =1/(n+1) Zisg pia Vi
=1/(n+1) (Y1 + Zican Vi)
= 1/(n+1) (yn+1 +Nn en)
= 1/(n+1) (yn+1 + (n+1) en - en)
=0, + 1/(n+1) (yn.1 - 0,)

Example: Mean Estimation

e vi=0+errorterm (constant-no x’s)
e Current estimate 0,=1/nX_1 ,V;

@
65 y6

* Oh = 1/(n+1) Lict.ne1 Yi
= 1/(n+1) (yn+1 +2iz1.n yi)
= 1/(n+1) (yn+1 +n en)
=1/(n+1) (Yns1 + (n+1) 6, — 6,)
=0 + 1/(n+1) (Y1 - 6n)

Example: Mean Estimation

e vi=0+errorterm (constant-no x’s)
e Current estimate 0,=1/n 2.1 Vi

65 ‘ 66=5/665+1/6y6

* Oh = 1/(n+1) Lict.ne1 Yi
= 1/(n+1) (Yne1 + Zic1n Vi)
= 1/(n+1) (yn+1 +n en)
= 1/(n+1) (yn+1 + (n+1) 6n - en)
= 0n + 1/(n+1) (Yne1 - 0n)

Example: Mean Estimation

* en+1 = en + 1/(n+1) (yn+1 - en)
e Only need to storen, 0,

@
0, | 05 =5/6 0 + 1/6 y¢

Learning Rates

e |nfact, 0,,1 =0, + a, (y..1 - 0,) converges to
the mean for any a, such that:
—a,—>0asn— oo
— X0, > ®©
- 2a,2—>C<x®

e O(1/n) does the trick

e If o, is close to 1, then the estimate shifts
strongly to recent data; close to 0, and the
old estimate is preserved

Learning Rates in RL in Practice

e Maintain a per-state count NJs]
e Learning rate is function of N[s], ot(N[s])
e Sufficient to satisfy theory: a(N[s])=1/N(s)
e Often viewed as too slow
— o drops quickly
— Convergence is slow
e |n practice, often a floor on, a, e.g., a = 0.01
e Floor leads to faster learning, but less stability

Online Implementation

[|
3| 0001+ 3 /0.81|0.87|0.92| +1
210 O |-1 — - |0.76 0.66| -1
11\0 134 i 00 110.71/|0.66|0.61|0.39
1 2 3 4 1 2 3 4

1. Store counts N[s] and estimated values V*(s) (initialize to O, typically)
2. After atrial t, for each state s in the trial: Value of s in trial t

3, Set N[S] «— N[S]+1 /(from discounted sum)

4. Adjust value V™(s) < V™(s)+a(N[s])(Vt(s)-V7(s)) o(N[s])=1/N(s)

Doesn’t require storing all trajectories, but...
Simple averaging
Slow learning, because Bellman equation is not used
to pass knowledge between adjacent states

oral Difference Learning

Tem
310 0 0 | +1
21 0 0| -1
1,0 0 0 0
1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
Set N[s] <~ N[s]+1

3.

E/m(S) =R(s)+vy P(s'ls, a)Vt(S’)}

sreSucc(s,a)

Online estimation
of mean over value
next states

4. Adjust value V(s) <—{vn(s)+a(N[s])(r+yvn(s')-vn(s))}

Instead of averaging at the level of trajectories...
Average at the level of states

oral Difference Learning

Tem
310 0 0 | +1
2 ? 0| -1
1| 0 0 0 0
1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):

3.
4.

Set N[s] < N[s]+1
Adjust value V(s) <— V*(s)+a(N[s])(r+yV™(s’)-V(s))

10

Temporal Difference Learning
3/ 0| 0| 0|+ With learning rate

o=0.5
n o

11]-002| 0 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning

3 [-00215002>0 | +1 With learning rate
a=0.5

2 |-0.02 0 -1

1]-002 0 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

11

Temporal Difference Learning

3 [-0.02|-0.02 | 0.481>+1 With learning rate
a=0.5

2 | -0.02 ol -1

11]-002| 0 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning

3 [-0.04120.20-10.721>+1 With learning rate
a=0.5
2 | 004 0 -1
i

1|00l 0l 01| O

from start to +1

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

After a second trajectory

12

Temporal Difference Learning

3 | 0.07120.44-10.841>+1 With learning rate
a=0.5

2 | -0.06 ol -1
F

1]-006| 0 0 0

After a third trajectory
from start to +1

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

1.
2.

Temporal Difference Learning

3 | 023-10.62-1042 | +1 With learning rate
i a=0.5

2 |-0.03 o-1
4

1]-008| O 0 0

Our luck starts to run
out on the fourth trajectory

1 2 3 4

Store counts N[s] and estimated values V*(s)
For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

13

Temporal Difference Learning

3 [023] 062|042 | +1 With learning rate
’ a=0.5
2 |-0.03 019 | -1

But we recover...

1(-008| O 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) «<— V¥(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning

3 [023|062 | 0.69->+1 With learning rate
a=0.5

2 |-0.03 019 | =1

...and reach the goal!
1 |-008| O 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

For any s, distribution of s’ approaches P(s’|s,7(s))
Uses relationships between adjacent states to adjust
utilities toward equilibrium

Unlike direct estimation, learns before trial is terminated

14

Using TD for Control

e Recall value iteration:
V™*(s) = max_ R(s,a) +)/E P(s'ls,a)V'(s")
e Why not pick the maximizing a and then do:

V(s)=V(s)+a(N@)(r+ 7V (s')=V(s))

— s' is the observed next state after taking action a

What breaks?

e Action selection

— How do we pick a?

— Need to P(s’|s,a), but the reason why we’re doing RL is
that we don’t know this!

e Even if we magically knew the best action:
— Can only learn the value of the policy we are following

— If initial guess for V suggests a stupid policy, we’ll never
learn otherwise

15

Q-Values

e Learning V is not enough for action selection
because a transition model is needed

e Solution: learn Q-values: Q(s,a) is the utility of
choosing action a in state s

e “Shift” or “split” Bellman equation
— V(s) = max, Q(s,a)
— Q(s,a) =R(s) +y Zs P(s’|s,a) maxy Q(s,a’)

e So far, everything is the same... but what about
the learning rule?

Q-learning Update

o Recall TD:
« Update: V(s) < V(s)+a(N[s])(r+yV(s')-V(s))
. Use P to pick actions? a <— arg max, Zs P(s’|s,a)V(s’)
o Q-Learning:
« Update: Q(s,a) < Q(s,a)+a(N[s,a])(r+y max,Q(s’,a’)-Q(s,a))
. Select action: a «— arg max, Q(s,a)
- Key difference: average over P(s’|s,a) is “baked in” to
the Q function

- Q-learning is therefore a model-free learner

16

Q-Learning Demo
(see video from Zoom)

e Keyboard controlled Q-learning agent using robot grid world from
R&N (and previous MDP slides)
¢ Differences:
— Discount of 0.9
— No step cost (previously -0.04)
— Bad state has value 0 (previously -1)
¢ How to think of terminal states:
— Make transition to another state (absorbing state) with value that is always 0

— Problem then resets to start (no transition from absorbing state to start)

Q-learning vs. TD-learning

e TD converges to value of policy you are following

e Q-learning converges to values of optimal policy
independent of of whatever policy you follow
during learning!

e Caveats:

— Converges in limit, assuming all states are visited
infinitely often

— In case of Q-learning, all states and actions must be
tried infinitely often

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical

17

Brief Comments on
Learning from Demonstration

e LfD is a powerful method to convey human
expertise to (ro)bots

e Useful for imitating human policies

e Less useful for surpassing human ability
(but can smooth out noise in human demos)

e Used, e.g., for acrobatic helicopter flight

Advanced (but unavoidable) Topics

e Exploration vs. Exploitation

e Value function approximation

18

Exploration vs. Exploitation

e Greedy strategy purely exploits its current
knowledge

— The quality of this knowledge improves only for those
states that the agent observes often

e A good learner must perform exploration in order
to improve its knowledge about states that are
not often observed

— But pure exploration is useless (and costly) if it is never
exploited

Restaurant Problem

19

Exploration vs. Exploitation
in Theory and Practice

e Can assign an “exploration bonus” to parts of the world
(or state-action combinations) you haven’t experienced
much

— Versions of this are provably efficient, e.g., R-Max
(will eventually learn the optimal policy requiring
polynomial effort in size of problem)

— Works for small state spaces

e In practice e-greedy action selection is used most often
— Choose greedy action w.p. 1-¢

— Choose random action w.p. €

Value Function Representation

e Fundamental problem remains unsolved:
— TD/Q learning solves model-learning problem, but
— Large models still have large value functions
— Too expensive to store these functions

— Impossible to visit every state in large models

e Function approximation
— Use machine learning methods to generalize
— Avoid the need to visit every state

Function Approximation

e General problem: Learn function f(s)
— Linear regression
— Neural networks
— State aggregation (violates Markov property)

e |dea: Approximate f(s) with g(s;w)
— gis some easily computable function of s and w
— Try to find w that minimizes the errorin g

Updates with Approximation

e Recall regular TD update:

V(s) < V(s)+a(N[s])(r+yV(s')-V(s))

e With function approximation:
V(s)=V(s;w) Vector

/ operations
e Update:

W =w +ale+ W (s's w) =V (s; W)V V (s;w)

Neural networks are a special case of this.

21

Linear Regression Review

Define a set of basis functions (vectors)
?,(5), 9, (5)-..0, (5)
e Approximate f with a weigkhted combination of these
g(s;w) = Z,W_,co_, (5)
=

Example: Space of quadratic functions:

0 (s)=Lo,(s)=5,0,(s) = s

Orthogonal projection minimizes SSE

For linear value functions

e Gradient is trivial:
k
Vs;w) =2 wp,(s)
j=l1

v, V(s;w)=0,(5)

Individual
e Update is trivial: / components
i+l i ' 3 .
w, o =w, +a(r+yV(ssw) =V (s;w)e,(s)

22

Properties of approximate RL

e Exact case (tabular representation) = special case
¢ Can be combined with Q-learning

e Convergence not guaranteed
— Policy evaluation with linear function approximation converges if
samples are drawn “on policy”
— In general, convergence is not guaranteed
e Chasing a moving target
e Errors can compound

e Success has traditionally required very carefully chosen features

e Deepmind has recently had success using no feature engineering but
lots of training data

How’d They Do That???

e Backgammon (Tesauro)
— Neural network value function approximation

TD sufficient (known model)

Carefully selected inputs to neural network

About 1 million games played against self

e Atari games (DeepMind)
— Used convolutional neural network for Q-functions
— Days of play time per game

e Helicopter (Ng et al.)
— Learning from expert demonstrations

— Constrained policy space
— Trained on a simulator

23

Conclusions
Reinforcement learning solves an MDP
Converges for exact value function representation
Can be combined with approximation methods

Good results require good features and/or lots of data

24

