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Overview

• Bayes nets are (mostly) atemporal
• Need a way to talk about a world that 

changes over time
• Necessary for planning
• Many important applications

– Target tracking
– Patient/factory monitoring
– Speech recognition
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Back to Atomic Events

• We began talking about probabilities from 
the perspective of atomic events

• An atomic event is an assignment to every 
random variable in the domain

• For n binary random variables, there are 2n

possible atomic events

States

• When reasoning about time, we often call 
atomic events states

• States, like atomic events, form a mutually 
exclusive and jointly exhaustive partition of 
the space of possible events

• We can describe how a system behaves 
with a state-transition diagram
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State Transition Diagram

S1 S2

0.75

0.25 0.5

0.5

P(S2|S1)=0.75
P(S1|S1)=0.25
P(S2|S2)=0.50
P(S1|S2)=0.50

Don’t confuse states with state variables!
Don’t confuse states with state variables!
Don’t confuse states with state variables!

Note: Time indices are implicit, really
P(St+1=S2|St=S1), etc.

Example:  Speech Recognition

• Speech is broken down into atoms called 
phonemes, e.g., see arpanet: 
http://en.wikipedia.org/wiki/Arpabet

• Phonemes are pulled from the audio 
stream using a variety of techniques 

• Words are stochastic finite automata 
(HMMs) with outputs that are phonemes

http://en.wikipedia.org/wiki/Arpabet
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You say tomato, I say…

[t] [ow] [m]

[ey]

[aa]

[t] [ow]
1.0 1.0

1.0

1.0

1.0
0.5

0.5

Real variations in speech between speakers can be much more
subtle and complicated than this:  How do we learn these?

Fun on Mac OS

• say tomato

• say “[[inpt PHON]] tUXmAAtOW [[inpt TEXT]]”

• say “[[inpt PHON]] tUXmEYtOW [[inpt TEXT]]”
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Using HMMs for Speech Recognition

• Create one HMM for every word
• Upon hearing a word:

– Break down word into string of phonemes
– Compute probability that string came from 

each HMM
– Go with word (HMM) that assigns highest 

probability to string

State Transition Diagrams

• Make a lot of assumptions

– Transition probabilities don’t change over time (stationarity)

– The event space does not change over time

– Probability distribution over next states depends only on the 
current state  (Markov assumption)

– Time moves in uniform, discrete increments
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The Markov Assumption

• Let St be a random variable for the state at time t

• P(St|St-1,…,S0) = P(St|St-1)

• (Use subscripts for time; S0 is different from S0)

• Markov is special kind of conditional independence

• Future is independent of past given current state

Markov Models

• A system with states that obey the Markov assumption is 
called a Markov Model

• A sequence of states resulting from such a model is 
called a Markov Chain

• The mathematical properties of Markov chains are 
studied heavily in mathematics, statistics, computer 
science, electrical engineering, etc.
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What’s The Big Deal?

• A system that obeys the Markov property can be 
described succinctly with a transition matrix, where the 
i,jth entry of the matrix is P(Sj|Si)

• The Markov property ensures that we can maintain this 
succinct description over a potentially infinite time 
sequence

• Properties of the system can be analyzed in terms of 
properties of the transition matrix
– Steady-state probabilities
– Convergence rate, etc.

Observations
• Introduce Et for the observation at time t 

• Observations are like evidence

• Define the probability distribution over observations as function of current 
state:  P(E|S)

• Assume observations are conditionally independent of other variables given 
current state

• Assume observation probabilities are stationary

• Note: In MDPs, we assume that every state has a unique observation associated 
with it, so the true state is always known
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A Bayes Net View of HMMs

S0 S1

E0 E1

Note:  These are random variables, not states!

Applications

• Monitoring/Filtering:  P(St:E0…Et)
– S is the current status of the patient/factory
– E is the current measurement

• Prediction:  P(St:E0…Ek), t>k
– S is the current/future position of an object
– E are our past observations
– Project S into the future
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Applications

• Smoothing/hindsight:  P(Sk:E0…Et), t>k
– Update view of the past based upon future
– Diagnosis:  Factory exploded at time t=20, 

what happened at t=5 to cause this?

• Most likely explanation
– What is the most likely sequence of events 

(from start to finish) to explain observations?
– NB:  Answer is a single path, not a distribution

Example:  Robot Self Tracking

• Consider Roomba-like robot with:
– Known map of the room
– 4-way proximity sensors
– Unknown initial position (kidnapped robot problem)

• We consider a discretized version of this problem
– Map discretized into grid
– Discrete, one-square movements

(Images from iRobot’s web page)
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Simple Map, Kidnapped Robot

? ? ? ? ? ? ? ? ? ? ? ?

Robot Senses

? ? ? ? ? ? ? ? ? ? ? ?

Obstacles up and down, none left and right
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Robot Updates Distribution

? ? ? ? ? ?

Robot Moves Right, Updates

? ? ?? ? ?
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Robot Updates Probabilities

Obstacles up and down, none left and right

What Just Happened

• This was an example of robot tracking

• We can also do:
– Prediction (where would the robot be?)
– Smoothing (where was the robot?)
– Most likely path (what path did robot take?)
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Prediction

? ? ? ? ? ? ? ? ? ? ? ?

Suppose the Robot Moves Right Twice

New Robot Position Distribution

? ? ?? ? ?

Are these probabilities uniform?
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What Isn’t Realistic Here?
• Where does the map come from?
• Does the robot really have these sensors?
• Are right/left/up/down the correct sort of actions?  (Even if the robot 

has a map, it may not know its orientation.)
• Are robot actions deterministic?
• Are sensing actions deterministic?
• Would a probabilistic sensor model conflate sensor noise and 

incorrect modeling?
• Can the world be modeled as a grid?

• Good news:  Despite these problems, robotic mapping and 
localization (tracking) can actually be made to work!

…and it really is used:
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The Most Likely (Viterbi) Path

• How many paths are there through the state space?
– For n states, T time steps
– nT possible paths

• How do we maximize over this efficiently?
• Idea: 

– For each time time step t, store a table of size n such that Pt(s) = 
probability of highest probability path reaching state s at time t

– Compute Pt+1 from Pt

– Only need previous time step because of Markov property

Implementing the Viterbi Algorithm
(forward part)

• P0=initial distribution
• For t=1 to T

– P0 = uniform or some given initial distribution
– For NextS = 1 to n

• Pt[NextS]=0
• For PrevS = 1 to n

– Pt[NextS] = max{Pt[NextS],Pt-1[PrevS]*P(NextS|PrevS)}

• Pt[NextS] = Pt[NextS]*P(et|NextS)

What is is needed: Store argmax, reconstruct path in backward pass
(compare with reconstructing the path in search)
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Viterbi Path Algebraic View
From definition of Bayes net (or HMM):

Suppose we want max probability sequence of states:

Keep distributing max over product! Compare with Dijkstra’s
algorithm, dynamic programming.

��

EĞǁ�ZŽďŽƚ�WŽƐŝƚŝŽŶ��ŝƐƚƌŝďƵƚŝŽŶ

͍ ͍ ͍͍ ͍ ͍

�ƌĞ�ƚŚĞƐĞ�ƉƌŽďĂďŝůŝƚŝĞƐ�ƵŶŝĨŽƌŵ͍

DŽƐƚ�>ŝŬĞůǇ�;sŝƚĞƌďŝͿ�WĂƚŚ

�_����_�PD[�_��_�PD[�_��_��_�PD[

�_����_�PD[�_��_��_�PD[

�_��_��_���PD[���_����PD[

���������

�

�
����

�����

�

�
����

�
������������

���

��

��

6H3636636H36636H36636H3

6H3636636H36636H3

6H36636H363HH663

66

W

L
LLLLWW66

6

W

L
LLLLWW66

W

L
LLLL66WW66

W

W

WW

�

�

�

�

 
�

�

 
�

 
�

 

 

 

�
 

�v
W

L
LLLLWW 6H36636H363HH663

�
������ �_��_��_����_���� �

&ƌŽŵ�ĚĞĨŝŶŝƚŝŽŶ�ŽĨ��ĂǇĞƐ�ŶĞƚ�;Žƌ�,DDͿ͗

^ƵƉƉŽƐĞ�ǁĞ�ǁĂŶƚ�ŵĂǆ�ƉƌŽďĂďŝůŝƚǇ�ƐĞƋƵĞŶĐĞ�ŽĨ�ƐƚĂƚĞƐ͗

<ĞĞƉ�ĚŝƐƚƌŝďƵƚŝŶŐ�ŵĂǆ�ŽǀĞƌ�ƉƌŽĚƵĐƚ͊ �ŽŵƉĂƌĞ�ǁŝƚŚ��ŝũŬƐƚƌĂ͛Ɛ
ĂůŐŽƌŝƚŚŵ͕�ĚǇŶĂŵŝĐ�ƉƌŽŐƌĂŵŵŝŶŐ͘

��

EĞǁ�ZŽďŽƚ�WŽƐŝƚŝŽŶ��ŝƐƚƌŝďƵƚŝŽŶ

͍ ͍ ͍͍ ͍ ͍

�ƌĞ�ƚŚĞƐĞ�ƉƌŽďĂďŝůŝƚŝĞƐ�ƵŶŝĨŽƌŵ͍

DŽƐƚ�>ŝŬĞůǇ�;sŝƚĞƌďŝͿ�WĂƚŚ

�_����_�PD[�_��_�PD[�_��_��_�PD[

�_����_�PD[�_��_��_�PD[

�_��_��_���PD[���_����PD[

���������

�

�
����

�����

�

�
����

�
������������

���

��

��

6H3636636H36636H36636H3

6H3636636H36636H3

6H36636H363HH663

66

W

L
LLLLWW66

6

W

L
LLLLWW66

W

L
LLLL66WW66

W

W

WW

�

�

�

�

 
�

�

 
�

 
�

 

 

 

�
 

�v
W

L
LLLLWW 6H36636H363HH663

�
������ �_��_��_����_���� �

&ƌŽŵ�ĚĞĨŝŶŝƚŝŽŶ�ŽĨ��ĂǇĞƐ�ŶĞƚ�;Žƌ�,DDͿ͗

^ƵƉƉŽƐĞ�ǁĞ�ǁĂŶƚ�ŵĂǆ�ƉƌŽďĂďŝůŝƚǇ�ƐĞƋƵĞŶĐĞ�ŽĨ�ƐƚĂƚĞƐ͗

<ĞĞƉ�ĚŝƐƚƌŝďƵƚŝŶŐ�ŵĂǆ�ŽǀĞƌ�ƉƌŽĚƵĐƚ͊ �ŽŵƉĂƌĞ�ǁŝƚŚ��ŝũŬƐƚƌĂ͛Ɛ
ĂůŐŽƌŝƚŚŵ͕�ĚǇŶĂŵŝĐ�ƉƌŽŐƌĂŵŵŝŶŐ͘

Bayes Rule Reminder

!!

€ 

P(A∧B) = P(B∧ A)
P(A |B)P(B) = P(B | A)P(A)

P(A |B) =
P(B | A)P(A)

P(B)
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Conditional Probability with 
Extra Evidence

• Recall:  P(AB)=P(A|B)P(B)

• Add extra evidence C 
(can be a set of variables)

• P(AB|C)=P(A|BC)P(B|C)

Extending Bayes Rule

!!

€ 

P(A |BC) =
P(B | AC)P(A |C)

P(B |C)

How to think about this:  The C is like “extra” evidence.
This forces us into one corner of the event space.
Given that we are in this corner, everything behaves the same.
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Using Conditional Independence
And the Markov Property

• Conditional probability w/extra evidence:
– P(AB|C)=P(A|BC)P(B|C)

• P(StSt-1|et-1e0)=P(St|St-1et-1e0) P(St-1|et-1e0)  
=P(St|St-1) P(St-1|et-1e0)

Monitoring

• Given evidence up to time t, what is the probability of being in 
some state s at time t?

• Equivalent to: What is the sum of the probabilities of all paths 
that end in state s at time t given evidence up to time t.

• How do we compute this efficiently?
• Idea: 

– For each time time step t, store a table of size n such that P(st|et…e0) = 
sum or probabilities of all paths reaching state s at time t

– Compute P(st+1|et+1…e0) from P(st|et…e0) 
– Only need previous time step because of Markov property
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Implementation

P(S1t-1)

P(S2t-1)

P(S3t-1)

P(S1t)

P(St2)

P(S3t)

Maintain a vector of probabilities at each time step
Arcs correspond P(si|si-1) in summation of previous slide:
• Each color is a different iteration through the loop
• Add up probability of all paths that lead to each state

S
Weight by P(et|S1t)

forwards…è

NB: These are conditioned on e0…et-1,
but condition is omitted to fit in box.

NB: These are conditioned on e0…et,
but condition is omitted to fit in box.

Initialization: Typically an initial distribution is given for time
step 0 and there are no observations for time step 0.

Implementation

P(S1t-1)

P(S2t-1)

P(S3t-1)

P(S1t)

P(St2)

P(S3t)

Maintain a vector of probabilities at each time step
Arcs correspond P(si|si-1) in summation of previous slide:
• Each color is a different iteration through the loop
• Add up probability of all paths that lead to each state

S
Weight by P(et|S1t)

Weight by P(et|S2t) forwards…è

NB: These are conditioned on e0…et-1,
but condition is omitted to fit in box.

NB: These are conditioned on e0…et,
but condition is omitted to fit in box.
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Implementation

P(S1t-1)

P(S2t-1)

P(S3t-1)

P(S1t)

P(St2)

P(S3t)

Maintain a vector of probabilities at each time step
Arcs correspond P(si|si-1) in summation of previous slide:
• Each color is a different iteration through the loop
• Add up probability of all paths that lead to each state

S
Weight by P(et|S1t)

Weight by P(et|S2t)

Weight by P(et|S3t)

forwards…è

NB: These are conditioned on e0…et-1,
but condition is omitted to fit in box.

NB: These are conditioned on e0…et,
but condition is omitted to fit in box.

Monitoring Derivation

We want:  P(St|et…e0)

!!!!

€ 

P(St |et ...e0 ) =
P(et | St ,et −1...e0 )P(St |et −1 ...e0 )

P(et |et −1 ...e0 )
= αP(et | Stet −1...e0 )P(St |et −1 ...e0 )
= αP(et | St )P(St |et −1...e0 )

= αP(et | St ) P(St | St −1)P(St −1 |et −1...e0 )
St −1

∑
Recursive
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Example
• W = employee is working
• R = employee has produced results
• supervisor observes whether employee has produced results
• Infer whether employee is working given observations

P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2

Problem

• Assume employee starts job in a 
productive (working) state

• Supervisor has observed two 
consecutive meetings without results

• What is probability the employee was 
working in the second week?
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Let’s Do The Math
P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2

P(W2|r2r1)=α1P(r2|W2) P(W2|W1)P(W1|r1)
W1

∑

P(W1|r1)=α2P(r1|W1) P(W1|W0)P(W0)
W0

∑

P(w1|r1)=α20.4(0.8*1.0+0.3*0.0)=α20.32

P(w1|r1)=α20.8(0.2*1.0+0.7*0.0)=α20.16

P(w1|r1)= 0.67,P(w1|r1)= 0.33

More MathP(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2
P(w1|r1)= 0.67
P(w1|r1)= 0.33

!!!!

€ 

P(W2 | r!2r!1) = α1P(r!2 |W2 ) P(W2 |W1)P(W1 | r!1)
W1

∑

P(w2 | r!2r!1) = α10.4(0.8*0.67+ 0.3*0.33) = α10.25
P(w!2 | r!2r!1) = α10.8(0.2*0.67+ 0.7*0.33) = α10.292
P(w2 | r!2r!1) = 0.46,P(w!2 | r!2r!1) = 0.54
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Hindsight (Smoothing)

• Given evidence up to time t, what is the probability of being in some state s 
at time k<t?

• Equivalent to: 
– What is the sum of the probabilities of all paths that end in state s at time k 

given evidence up to time k…
– Weighted by all of the observations after time k.

• How do we compute probability of subsequent observations efficiently?
– Idea: 
– For each time time step k<j<T, store a table of size n such that P(et…ej+1|Sj) = 

probability of all evidence after time j starting from each state at time j
– Compute from P(et…ej|Sj-1)  from P(et…ej+1|Sj)  (work backwards!)
– Only need subsequent time step because of Markov property

Implementation

There is no et+1!
What does this mean?
Can assume all ones.

P(et|s1t-1)

P(et|s2t-1)

P(et|s3t-1)

P(et-1et|s1t-2)

P(et-1et|s2t-2)

P(et-1et|s3t-2)

ç…backwards

S

Weight by P(et|s1)

Weight by P(et|s2)

Weight by P(et|s3)

Weight by P(et-1|s1)

Weight by P(et-1|s2)

Weight by P(et-1|s3)

Black, blue, green 
are different iterations
through loop implied 
by summation on 
previous slide

P(si|si-1) 
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Hindsight Algebra

!!!!

€ 

P(Sk |et ...e0 ) = αP(et ...ek+1 | Sk,ek ...e0 )P(Sk |ek ...e0 )
!!!!!!!!!!!!!!!!!!!!!! = αP(et ...ek+1 | Sk)P(Sk |ek ...e0 )

P(et ...ek+1 | Sk ) = P(
Sk+1

∑ et ...ek+1 | SkSk+1)P(Sk+1 | Sk)

!!!!!!!!!!!!!!!!!!!!!!!! = P(
Sk+1

∑ et ...ek+1 | Sk+1)P(Sk+1 | Sk)

!!!!!!!!!!!!!!!!!!!!!!!! = P(ek+1 | Sk+1)P(
Sk+1

∑ et ...ek+2 | Sk+1)P(Sk+1 | Sk )
Recursive

Monitoring!

Hindsight (smoothing) Summary

• Forward:  Compute time k state distribution given
– Forward distribution up to k
– Observations up to k
– Equivalent to monitoring up to k

• Backward: Compute conditional evidence distribution after k
– Work backward from t to k

• Smoothed state distribution is proportional to product of 
forward and backward components 

(normalize to get true probabilities)
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Implementation Sanity Checks

• Make sure you never double count observations: 
Any path through the HMM should multiply by 
each P(ei|si) exactly once
(think of forward/backward as summing 
probabilities of paths, weighted by observations)

• Make sure you handle base cases
– Forward message starts with initial distribution at time 0
– Observations beyond the horizon can be ignored

(or assume first backwards message is all ones)

Problem II

Can we revise our estimate of the probability that the employee
worked at step 1?

We initially thought:

Since the employee didn’t have results at time 2, is it now
less likely that they were working at time 1?

!!!!

€ 

P(w1 | r!1) = 0.67,P(w!1 | r!1) = 0.33
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Let’s Do More Math
P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2
P(w1|r1)= 0.67
P(w1|r1)= 0.33

P(W1|r2r1)=αP(W1|r1)P(r2|W1)

P(r2|w1)= P(r2|W2)
W2

∑ P(W2|w1)

P(r2|w1)= (0.4*0.8+0.8*0.2)= 0.48

P(r2|w1)= (0.4*0.3+0.8*0.7)= 0.68

P(w1|r2r1)=α0.67*0.48=α0.3216
P(w1|r2r1)=α0.33*0.68=α0.2244
P(w1|r2r1)= 0.59,P(w1|r2r1)= 0.41

Sums probabilities
of all ways of making
step 2 observation
given w1

Checkpoint

• Done:  Forward Monitoring and Backward Smoothing

• Monitoring is recursive from the past to the present
• Backward smoothing requires two recursive passes 

(forward then backward)
• Implemented as two loops (not recursively)

• Called the forward-backward algorithm
– Independently discovered many times throughout history
– Was classified for many years by US Govt.
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What’s Left?

• We have seen that filtering and smoothing can be done 
efficiently, so what’s the catch?

• We’re still working at the level of atomic events

• There are too many atomic events!

• We need a generalization of Bayes nets to let us think 
about the world at the level of state variables and not 
states

Dynamic Bayes Nets

X

Y

Z

State Variables

Time t t+1

!!
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P(z') !!
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P(z')
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Working With DBNs

Can we do variable elimination for DBNs?

Harsh Reality

• While BN inference in the static case was a very nice 
story, there are essentially no tractable, exact 
algorithms for DBNs

• Dealing with intractability
– Approximate inference algorithms

• Variational methods
• Assumed density filtering (ADF)

– Sampling methods
• Sequential Importance sampling
• Sequential Importance Sampling with Resampling

(SISR, particle filter, condensation, etc.)
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Continuous Variables
(outside of scope of class)

• How do we represent a probability distribution over a 
continuous variable?
– Probability density function
– Summations become integrals

• Very messy except for some special cases:
– Distribution over variable X at time t+1 is a multivariate 

normal with a mean that is a linear function of the variables 
at the previous time step

– This is a linear-Gaussian model

Inference in Linear Gaussian Models

• Filtering and smoothing integrals have closed 
form solution

• Elegant solution known as the Kalman filter
– Used for tracking projectiles (radar)
– State is modeled as a set of linear equations

• S=vt
• V=at

– What about pilot controls?
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HMM Conclusion

• Elegant algorithms for temporal reasoning over discrete atomic 
events, Gaussian continuous variables 

(many practical systems are approximately such)

• Exact Bayes net methods don’t generalize well to state variable 
representation in the the temporal case: little hope for exponential 
savings

• Approximations required for large/complex/continuous systems


