CompSci 370

Artificial Intelligence
Introduction

Ron Parr
Duke University
Department of Computer Science

Course Staff
(See Class Web Page)

- Ron Parr – instructor
- Graduate TAs
 - Vikram Aikat
 - Dillon Sandhu
- Undergraduate TAs
 - Angikar Ghosal
 - Justin Van De Graaf
 - Yuhao Zhou
 - (more may be added)
About me

- Learned to program on my 8-bit Atari computer
- Sent a print out of my Othello (reversi) playing code (in BASIC!) w/my college application
- Majored in Philosophy
- Switched to CS for graduate school
- Started at Duke in 2000
- Once taught this class to just 6 students

Am I Prepared?

- Good programming skills:
 - We assume that you can write, debug your own programs
 (If you need help programming, this class is too hard for you!)
 - We will use python for programming assignments
 - We expect you to figure out how to use Python and the command line

- Other expectations
 - Ability to do short proofs
 - Basic probability concepts (though we will review this)
 - Basic algorithmic concepts
 - Complexity - $O()$
 - Analysis of algorithms
 - Math: Basic calculus, basic linear algebra
 - CompSci 230 is essential
 - CompSci 330 also helpful
What is AI?

• For centuries, perhaps longer, people have wondered how to reproduce the smarts that people have...
• Even though we really have no idea how to define such things
• Defining intelligence has, itself, been a career-long endeavor for many scholars

Machine Intelligence Over the Centuries

• As long as people have had machines, they’ve wondered if they could exhibit human-like intelligence
• von Kempelen’s (fraudulent) Turk (1700s), Babbage’s analytical and difference engines (1800s), Turing’s Turing machine (1900s)
Turing Test

• Computer must be indistinguishable from a human based upon written exchanges
 – Does this imply intelligence?
 – How could the computer cheat?
 – Does intelligence imply a certain type of computation?
 – Could an intelligent machine still fail the test?
• Does our notion of intelligence transcend our concept of humanity?

What Intelligence Isn’t

• It’s not about fooling people
• Fooling people is (in some cases) easy, e.g., eliza: https://web.njit.edu/~ronkowit/eliza.html
 (built in to emacs meta-x doctor)

• More recent efforts: http://chatbots.org/
• See also GPT3
AI after Turing

- Modern AI is ~60 years old
- “AI” term proposed at 1957, Dartmouth Conference
- Has been a subject of intense study since then
 - 1960’s: Logic, search, theorem proving, perceptron
 - 70’s: Robotic & perception
 - 80’s: Expert systems, 1st industrial interest, neural nets
 - 90’s: agents, uncertainty, “AI Winter”
 - 00’s: growth of ML, NLP, usable AI systems
 - 10’s: Deep learning, industrial/commodity AI, robotics
 - 20’s: Up to you!

AI in Your Life

- Game playing - chess, Go, jeopardy, Starcraft
- Voice recognition and dialog – Siri, Alexa, Google Assistant
- Recommender systems – Netflix, amazon
- Scene, object, face recognition: Face ID, MS seeing AI, image search (objects and faces)
- Automated logistics – UPS, US military
- Space exploration
- Automated science & medicine
- Robotics & Autonomous Vehicles
Example: AI at Amazon Warehouses

- Amazon uses robots to move products within its warehouses (deploys 200,000 robots)
- Amazon uses AI to predict demand
- May use AI to deliver products
- Consequences:
 - Pay fewer workers
 - Warehouses are packed more densely
 - Less space wasted on unpopular products
 - Combine to increase value per sq. unit of space

But Where’s the General Intelligence?

- AI didn’t get traction until it focused on more specific problems
- Hard to provide “general intelligence” if you don’t know what it is

- Are we mimicking intelligence or getting closer to it by focusing on specific problems?
The sad (reassuring?) truth about modern AI

- Good news: Fears about the robot apocalypse are (for now) overblown

- Bad news:
 - Not because we’re clever about preventing it
 - Because we aren’t tackling:
 - Awareness
 - Deep understanding
 - High level reasoning
 - Robustness
 - Danger of deadly mistakes (if not intelligent ones) remains

What is covered this semester?

- Search
 - Uninformed search, informed search, CSPs, classical planning
- Game Playing
 - minimax, alpha-beta search
- Logic and Knowledge Representation
 - Propositional logic, first order logic, theorem proving
- Reasoning under uncertainty
 - probability, Bayes nets, HMMs & tracking
- Probabilistic planning and reinforcement learning
- Introduction to machine learning
- Introduction to game theory (time permitting)
Major Topics *Not* Covered

- Natural Language

- Vision, except as application of machine learning

Class Mechanics

- **Textbook:** *Artificial Intelligence, A Modern Approach*, Russell & Norvig (*fourth* edition – third is probably OK)
 - Semi-required
 - On Amazon, electronic version also available
 - Please don’t steal my advisor’s textbook!

- **Homework:** 40%
 - mix of short proofs, algorithm design/analysis, and programming projects
 - High level discussion OK, write-up, coding must be your own
 (see matrix on class web page)

- **Midterm:** 30%
 - Conceptual questions
 - Hopefully in person, no collaboration
 - Scheduled during class time

- **Final:** 30%
 - Conceptual questions
 - Hopefully in person, no collaboration
 - Scheduled according to registrar’s final exam schedule
Grading

• I tend to give challenging conceptual questions, and not everybody will get them
• More important for you to be challenged than to have a score that you can put on your refrigerator

• Don’t obsess over raw scores
• At end of semester, I will decide how many points correspond to 1/3 of a letter grade
 – Will always be >= 3.33
 – Typically chosen to ensure median grade of B+ or A-

Discussion Sections

• Staffed by (U)Tas
• Attendance optional
• No new material covered
• Goals:
 – Work through common issues, e.g., “Help me fix my python installation!”
 – Work through problems/examples that wouldn’t fit in lecture
• We will usually post questions for discussions before discussion, and post solutions after discussion
Programming Assignments

• Based on the Berkeley Pacman framework

• Why?
 – It’s really well-done
 – Seeing your own code run AI algorithms is fun, motivating, and develops your intuitions
 – Even debugging is instructive

Pacman Limitations

• Works with Python 3.7, may not work with higher versions

• Not all algorithms make sense in this framework (life isn’t a Pacman game)

• Has been around for a while
 – Pacman was new when RP was a kid
 – Temptation to cheat
Academic Honesty

- Brainstorming with friends is encouraged, but answer write up and coding must be your own work
- Don’t confuse brainstorming with letting your smart friends tell you the answers
- Don’t Google for answers!!!
- Don’t troll for answers from previous semesters
- You may Google for definitions

- What you turn in must be your own work!!!

Examples of Cheating

- Simply reading solutions to similar problems found by searching
- Submitting code written by others
- Refactoring or cosmetically modifying code written by others (this is much easier to catch than you think!)
- “Borrowing” a friend’s laptop and finding answers

- Note: **Uploading** to a code sharing site is also cheating
Consequences of Cheating

• One year, 8 people were caught submitting code from the internet as their own code
 – All cases were reported
 – Consequences included:
 • Zeroes on assignments
 • Suspension
 • Failure to graduate
 • Retraction of job offers

• Three students were caught cheating in Spring 2021!

Consequences of Cheating This Year

• All cases will be reported
• A grade of zero will be given for any assignment on which cheating is detected
• At least 1/3 letter grade will be deducted from the final grade for each instance of cheating in addition to any other penalties
• Other penalties may apply, at the discretion of the instructor and/or dean

Just don’t do it!
Should I worry about getting falsely accused?

• No!

• I have never had a false positive accusation

• How do I know this?
 – I don’t make frivolous accusations
 – Cheating is surprisingly obvious when it happens
 – When presented with evidence, students have always owned up

On a More Positive Note

• This class will be hard and a lot of work, but I have taught versions of it for many years and most who are prepared and stick with it:
 – Earn a reasonable grade in the end
 – Have fun with projects
 – Learn a lot

• We are here to help!
• We do not want to be your adversaries in this process
• Let us be your partners in learning by allowing us to help you