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Logic Intro

CompSci 370
Duke University

Ron Parr

Historical Perspective I

• Logic was one of the classical foundations of AI
• Dream:  A Knowledge-Based agent

– Tell the agent facts
– Agent uses rules of inference to deduce consequences
– Example: prolog

• Distinction between data and program
• Embodied in field of “Expert Systems”

Source: Wikipedia
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Example: Minesweeper

• How do you play minesweeper?
• How would you program a machine to do it?

– Hacking
– Search/CSPs
– Logic

• Logic approach
– Tell the system of rules of minesweeper
– System uses logic to make the best moves

https://upload.wikimedia.org/wikipedia/commons/1/1b/Kmines_Expert_Game_with_Numbers_1-8.png

What is logic, really?

• Syntax:  Rules for constructing valid sentences

• Semantics:  Relate syntax to the real world
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Entailment

• Aim:  Rule for generating (or testing) new 
sentences that are necessarily true

• The truth of sentence may depend upon 
the interpretation of the sentence

Interpretations

• An interpretation is a way of matching up 
objects in the universe with symbols in a 
sentence (or database).

• A sentence may be true in one interpretation, 
but false in another

• A necessarily true sentence is true in all 
interpretations = entailed by premises in our KB
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Examples

• Premises (facts in our database or KB):
– (X or Y)
– Not X
– Conclude: 

• Premises
– If P then Q
– Q
– Conclude: 

Soundness & Completeness

• A (set of) rule(s) of inference is sound if it generates 
only sentences that are entailed by the knowledge 
base, i.e., only necessary truths

• A (set of) rule(s) of inference is complete if it can 
generate all necessary truths

• Can we have one w/o the other?
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Historical Perspective II
• Things that are not true necessarily but still true are sometimes 

said to be “contingent,” “accidental,” or “synthetic,” truths.

• A deep understanding of this distinction evolved through 
thousands of years of philosophy and mathematics

• Arguably one of the most important intellectual 
accomplishments of mankind
– Basis of mathematic proofs
– Provides a rigorous procedure for verifying statements
– Foundation of rigorous thinking – allows us to distinguish sound from 

unsound reasoning in a dispassionate manner

Fun Exercise

• See dictionary of fallacies or one of many similar websites
– http://www.ozarkia.net/bill/fallacies/index.html
– https://en.wikipedia.org/wiki/List_of_fallacies

• Count how often you see these from politicians, e.g.,
– No true Scottsman
– Tu Quoque

• Make it a drinking game? (Don’t blame me if you get blitzed!)

http://www.ozarkia.net/bill/fallacies/index.html
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Why logic is still important for AI

• Example from humanity:
– People are rampantly illogical in their daily lives, but
– Still rely upon logic when precise reasoning is required

• Example form current state of AI:
– Machine learning (deep learning) is currently very hot
– Yet, we still need logic to communicate rules about 

safety, etc. to automated systems, and to verify that 
these systems perform as required

Propositional Logic

• Propositional logic is the simplest logic
• All sentences are composed of

– Atoms
– Negation
– Disjunction, conjunction (or, and)
– Conditional, biconditionals

• Atoms can map to any proposition about 
the universe (depending upon the 
interpretation)
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Checking Validity

• Classic method for checking validity: truth table
• Enumerate all possible values (t/f) of atomic elements of 

a sentence

• Enumerate all 4 (or more) combinations – verify that 
conclusion is true in all situations consistent with 
premises

!!

€ 

(P∨H)
¬H

P

Horizontal
line separates
premises from
conclusion

Inference Rules

• Inference rules are (typically) sound 
methods of generating new sentences 
given a set of previous sentences

• Inference rules save us the trouble of 
generating truth tables all the time
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Inference Rules I

• Modus Ponens

• And-Elimination

€ 

α ⇒ β,α
β

  !!!!

€ 

α1 ∧α2 ∧…∧αn

α i

• And-Introduction

• Or-Introduction

Inference Rules II

  !!!!
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α1,α2,…,αn

α1 ∧α2 ∧…∧αn

  !!!!
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α i

α1 ∨α2 ∨…∨αn
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Inference Rules III

• Double Negation Elimination

• Unit Resolution

€ 

¬¬α
α

€ 

α ∨ β,¬β
α

Resolution

€ 

α ∨ β,¬β∨γ
α ∨γ

Resolution is perhaps the most important inference rule!

Why? Because it is sound and complete.
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Complexity of Inference

• What is the complexity of exhaustively verifying the 
validity of a sentence with n literals (variables)?

• Is there a computational approach using inference rules 
that avoids this?

• Special Case:  Horn Logic
– Horn clauses are disjunctions with at most one positive literal
– Equivalent to   !!!!

€ 

P1 ∧P2 ∧…∧Pn ⇒ Q

!!!!

€ 

2n

State dept. photo downloaded from Wikipedia

Remember De Morgan’s Law?

• not(P and Q) = (not P) or (not Q)

• not(P or Q) = (not P) and (not Q)
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Implications and Horn Clauses

• If P then Q
– Same as:  (not (P and (not Q))
– Same as:  (not P) or Q
– …and this is horn!

• If (P1 and P2 and … Pn) then Q
– Same as: (not ((P1 and P2 and … Pn) and (not Q))
– Same as: not (P1 and P2 and … Pn) or Q
– Same as: ((not P1) or (not P2) or … (not Pn) or Q)
– …and this is horn!

Horn Clause Inference

• Horn clause inference is polynomial – Why?
– Every sentence establishes exactly one new fact
– Can add every possible new fact implied by our KB in 

n passes over our database
• What types of things are easy to represent with 

horn clauses?
– Diagnostic rules
– “Expert Systems”
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Shortcomings of Horn Clauses

• Suppose you want to say, “If you have a runny 
nose and fever, then you have a cold or the flu.”

• If (runny_nose and fever) then (cold or flu)
• But this isn’t a horn clause:

(not runny_nose) or (not fever) or (cold) or (flu)

• Does adding two separate horn clauses work?
– (not runny_nose) or (not fever) or (cold)
– (not runny_nose) or (not fever) or (flu)

Propositional Logic Conclusion

• Logic gives formal rules for reasoning
• Necessarily true = true in all interpretations
• Contrast with CSPs:  Satisfiable = true in some, but not 

necessarily all interpretations
• Sound inference rules generate only necessary truths
• Resolution is a sound and complete inference rule
• Inference with a horn KB is poly time
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Limitations of Propositional Logic

• Suppose you want to say: All humans are mortal
• For ~7B people, you would need ~8B propositions
• Suppose you want to stay that (at least) one 

person has perfect pitch
• You would need a disjunction of ~8B propositions

• There has to be a better way…

First Order Logic

• Propositional logic is very restrictive
– Can’t make global statements
– Workarounds tends to have very large KBs

• First order logic is more expressive
– Relations, quantification, functions
– but… inference is trickier
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Relations

• Assert relationships between objects
• Examples

– Siblings(Luke, Leia) 
– Between(Canada, US, Mexico)

• Semantics
– Object and predicate names are mnemonic only
– Interpretation is imposed from outside
– Often we imply the “expected” interpretation of 

predicates and objects with suggestive names

Functions

• Functions are special cases of relations
• Suppose R(x1,x2,…,xn,y) is such that for every value 

of x1,x2,…,xn there is a unique y
• Then R(x1,x2,…,xn) can be used as a shorthand for y

– Crossed(Right_leg_of(Ron), Left_leg_of(Ron))

• Remember that the object identified by a function 
depends upon the interpretation
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Quantification

• For all objects in the world…

• For at least one object in the world…

!!!!

€ 

∀xhappy(x)

!!!!

€ 

∃xhappy(x)

Examples

• Everybody loves somebody

• Everybody loves everybody

• Everybody loves Raymond

• Raymond loves everybody
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Equality

• Equality states that two objects are the same
– Son_of(Barbara) = Ron

• Equality is a special relation that holds whenever 
two objects are the same

• We can imagine that every interpretation comes 
with its own identity relation
– Identical(object27, object58)

Inference

• All rules of inference for propositional logic apply 
to first order logic

• We need extra rules to handle substitution for 
quantified variables

!!!!

€ 

SUBST({x /Harry,y /Sally},Loves(x,y)) = Loves(Harry,Sally)
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Inference Rules

• Universal Elimination

• How to read this:
– We have a universally quantified variable v in a
– Can substitute any constant g for v in a

!!

€ 

∀v :α(v)
SUBST ({v /g},α(v))

Inference Rules

• Existential Elimination

• How to read this:
– We have a universally quantified variable v in a
– Can substitute any new k* for v and a will still be true
– *IMPORTANT:  k must be a previously unused 

constant (skolem constant).  Why is this OK?

!!!!

€ 

∃v :α(v)
SUBST({v /k},α(v))
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Skolemization within Quantifiers

• Skolemizing w/in universal quantifier is tricky
• Everybody loves somebody

• With Skolem constants, becomes:

• Why is this wrong?
• Need to use skolem functions:

!!

€ 

∀x∃y : loves(x,y)

!!!!

€ 

∀x : loves(x,object34752)

!!

€ 

∀x : loves(x,personlovedby(x))

Inference Rules

• Existential Introduction

• How to read this:
– We know that the sentence a is true
– Can substitute variable v for any constant g in a and 

(w/existential quantifier) and a will still be true
– Why is this OK?

!!!!

€ 

α(g)
SUBST({v /g},∃v :α(v))
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Generalized Modus Ponens Example

• If has_US_birth_certificate(X) then natural_US_citizen(X)

• has_US_birth_certificate(Obama)

• Conclude SUBST({Obama/X},natural_US_citizen(X))

• i.e., natural_US_citizen(Obama)

Generalized Modus Ponens

• How to read this:
– We have an implication which implies q
– Any consistent substitution of variables on the 

LHS must yield a valid conclusion on the RHS

  !!!!

€ 

p1 ',p2 ',…pn ',(p1 ∧ p2 ∧…∧ pn ⇒ q)
SUBST(θ,q)

!!!!

€ 

SUBST(θ,pi ') = SUBST(θ,pi)∀i
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Unification

• Substitution is a non-trivial matter
• We need an algorithm called unify:

• Important:  Unification replaces variables:

• Are these the same x?

!!!!

€ 

Unify(p,q) = θ : Subst(θ,p) = Subst(θ,q)

!!!!

€ 

∃xLoves(John,x)
∃xHates(John,x)

Unification Example

!!

€ 

∀xKnows(John,x)⇒ Loves(John,x)
Knows(John, Jane)
∀yKnows(y,Leonid)
∀yKnows(y,Mother(y))
∀xKnows(x,Elizabeth)

!!!!

€ 

Unify(Knows(John,x),Knows(John, Jane)) =

Unify(Knows(John,x),Knows(y,Leonid)) =

Unify(Knows(John,x),Knows(y,Mother(y))) =

Unify(Knows(John,x),Knows(x,Elizabeth)) =

Note: All unquantified variables are assumed universal from here on.
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Most General Unifier

• Unify(Knows(John,x),Knows(y,z))
– {y/John,x/z}
– {y/John,x/z,w/Freda}
– {y/John,x/John,z/John)

• When in doubt, we should always return 
the most general unifier (MGU)
– MGU makes least commitment about binding 

variables to constants

Proof Procedures

• Suppose we have a knowledge base: KB
• We want to prove q
• Forward Chaining

– Like search:  Keep proving new things and adding them 
to the KB until we are able to prove q

• Backward Chaining
– Like backward search in planning
– Find p1…pn s.t. knowing p1…pn would prove q
– Recursively try to prove p1…pn
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Forward Chaining Example

!!

€ 

∀xKnows(John,x)⇒ Loves(John,x)
Knows(John, Jane)
∀yKnows(y,Leonid)
∀yKnows(y,Mother(y))
∀xKnows(x,Elizabeth)

A Note About Forward Chaining

• As presented, forward chaining seems undirected
• Can view forward chaining as a search problem
• Can apply heuristics to guide this search
• If you’re trying to prove that Barack Obama is a natural born citizen, 

should you should start by proving that square127 is also a 
rectangle???

• Interesting AI history: AM/Eurisko controversy
– Doug Lenat introduced what was essentially a forward chaining system for 

coming up with interesting math concepts
– Claimed to (re)discover interesting concepts using only simple heuristics
– Methodology sharply criticized due to opacity 

(see Ritchie and Hanna 1984 and response from Lenat and Brown 1984)
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Backward Chaining Example

!!

€ 

∀xKnows(John,x)⇒ Loves(John,x)
Knows(John, Jane)
∀yKnows(y,Leonid)
∀yKnows(y,Mother(y))
∀xKnows(x,Elizabeth)

• Goal:  Loves(John, Jane)?
• Subgoal: Knows(John, Jane)

Completeness

• Problem:  Generalized Modus Ponens not complete
• Forward/Backward chaining rely upon generalized MP
• Goal:  Sound and complete procedure for first order logic

∀X :P(X)⇒Q(X)
∀X :¬P(X)⇒ R(X)
∀X :Q(X)⇒ S(X)
∀X :R(X)⇒ S(X)
S(a)???
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Generalized Resolution

• If the same term appears in both positive 
and negative form in two disjunctions, they 
cancel out when disjunctions are combined

  !!!!

€ 

(p1 ∨…p j…∨ pm),(q1 ∨…qk…∨qn)
SUBST(θ,(p1 ∨…p j−1 ∨ p j+1…∨ pm ∨q1 ∨…qk−1 ∨qk+1…∨qn))

!!!!

€ 

θ =Unify(p j,¬qk)

Generalized Resolution Example

• Given:
– (¬P(X) ∨ Q(X))
– (P(X) ∨ R(X))
– (¬ Q(X) ∨ S(X))
– (¬ R(X) ∨ S(X))

• Can we conclude: S(a)?

• Can we conclude: S(a)?
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Resolution Tree
(¬P(X) ∨ Q(X)) (P(X) ∨ R(X))

(R(X) ∨ Q(X)) (¬ R(X) ∨ S(X))

(Q(X) ∨ S(X)) (¬ Q(X) ∨ S(X))

{X/a}

S(a)Deductions in Green
Substitutions in Blue

Resolution Properties

• Proof by refutation
– Asserts negation of what we want to prove
– Shows that this leads to a contradiction
– This is both sound and complete(NB: We did not do this in the first example)

• Resolution w/o refutation is sound, but not complete

• To use resolution as an all-purpose tool we must:
– Convert everything to a canonical form that is compatible with resolution 

(Conjunctive Normal Form or CNF)
– Assert negation of what we want to prove
– Show that resolution leads to a contradiction
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Same Example Using Refutation
(Not Required in This Case)

Asserted for contradiction in Red

¬S(a)

{}

(¬P(X) ∨ Q(X)) (P(X) ∨ R(X))

(R(X) ∨ Q(X)) (¬ R(X) ∨ S(X))

(Q(X) ∨ S(X)) (¬ Q(X) ∨ S(X))

{X/a}S(X)Deductions in Green
Substitutions in Blue

A Note About Contradictions

• Proof by contradiction is very powerful

• If assuming P produces a contradiction, then
P must be false

• Leaving contradictions in KB is disastrous
• It’s true in sci fi: https://youtu.be/Mw3zzMWOIvk
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Contradictions Allow Us To Prove Anything

• Given:
– happy(x)
– ¬happy(x)

• Prove: flies(Ron)

• Two paths
– Or introduction + resolution
– Resolution with refutation

Or Introduction

• happy(X) ⊢ (happy(X) ∨ flies(Ron)) 

• (happy(X) ∨ flies(Ron)), ¬happy(X) ⊢ flies(Ron))

Or Introduction

Resolution
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Resolution With Refutation

¬ flies(Ron) happy(X) ¬ happy(X)

{}

Observe that what we’re trying to prove isn’t even used

Conjunctive Normal Form (CNF)

• Eliminate Implications
• Move negation inwards (using e.g. DeMorgan’s law)
• Standardize (apart) variables
• Move quantifiers Left
• Skolemize
• Drop universal quantifiers 

(all variables implicitly universally quantified)
• Distribute OR over AND: (A^B)vC = (AvC)^(BvC)
• Flatten nested conjunctions and disjunctions
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Computational Properties
• We can enumerate the set of all proofs
• We can check if a proof is valid
• First order logic is complete (Gödel’s completeness result)

• What if no valid proof exists?
• Inference in first order logic is semi-decidable
• Compare with halting problem (halting problem is semi-decidable)

• As with propositional logic, horn clauses are a useful special case, though not 
as big of a win computationally - more about this when we discuss prolog

Gödel’s Incompleteness Result

• Gödel’s incompleteness result is, perhaps, better known
• Incompleteness applies to logical/mathematical systems 

rich enough to contain numbers and math
– Need a way of enumerating all valid proofs within the system
– Need a way of referring to proofs by number

• Construct a Gödel sentence: 
– S:   For all i, i is not the number of a proof of the sentence j
– (Equivalent to saying, there does not exist a proof of sentence j)
– Suppose sentence S is sentence j

• If S is false, then we have a contradiction
• If S is true, then we can’t have a proof of it
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Diagonalization
• Incompleteness can be seen as type of diagonalization:

– Define a set (Rationals, TMs that halt, provable theorems)
– Use rules of the system to create an impossible object 

• Example:  Proof that reals are not enumerable (i.e., not 
countable and therefore larger than the rationals)

Countability of Rationals

Label n0 d0 n1 d1 …
0 0 0 0 0 …
1 1 0 0 0 …
2 0 1 0 0 …
3 1 1 0 0 …
… … … … … …

  !!!!

€ 

X =
n0 × 2

0 + n1 × 2
1 + n2 × 2

2…
d0 × 2

0 + d1 × 2
1 + d2 × 2

2…
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Uncountability of Reals
• Given:

• Construct by inverting along the diagonal:
Label n0 d0 n1 d1 …

0 1 0 0 0 …
1 1 1 0 0 …
2 0 1 1 0 …
3 1 1 0 1 …
… … … … … …

Label n0 d0 n1 d1 …
0 0 0 0 0 …
1 1 0 0 0 …
2 0 1 0 0 …
3 1 1 0 0 …
… … … … … …

Implications of all this
• Sophomoric interpretation:  AI is impossible/implausible because 

there will always be true things that cannot be discovered by logic

• A bit of reality:
– Incompleteness talks about a system’s ability to prove things about itself
– For any given system, it may be possible to prove things by talking about 

the system in a more expressive language
– Relationship of the unprovable to intelligence is murky at best:  Are the 

things you can’t justify the things that make you intelligent?
– Not clear that anything interesting is unprovable in a practical sense 

(though plenty of interesting things remain unproven)
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First Order Logic Conclusions

• First order logic adds relations and quantification to 
predicate logic

• Inference in first order logic is, essentially, a 
generalization of inference in propositional logic
– Resolution is sound and complete
– Use of resolution requires:

• Conversion to CNF
• Proof by refutation

• In general, inference is first order logic is semi-decidable
• FOL + basic math is no longer complete

Logic in Practice

• Resolution in practice:
– Convert to canonical form
– Assert negation of the proof target
– Resolve until “nil” is obtained

• Problem:  In general, we can’t bound the number 
of steps of resolution needed.
(In some cases, we can make assumptions about a 
restricted number of objects in the universe, but then we 
go from semi-decidable to exponential - still unpleasant.)
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Speeding Up Resolution

• There are many heuristics for speeding up resolution –
we can view it as a special kind of search

• Can also consider special cases

• AI has a colorful history of special case logics and special 
case reasoning engines for handling these logics

Prolog
• Prolog is a grand effort to make logic a practical 

programming method
• Japanese 5th generation computer project, essentially a 

massive prolog machine research project, burned $400M 
in the 1980s (target was $1.9B)

• Prolog is a declarative language
– State the things that are true
– Ask the system to prove things
– All computations are essentially proofs

• Prolog makes many restrictions on KB
• My bias:  Prolog is a fascinating way to think about logic 

and programming, but is of waning importance in AI 
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Prolog Properties I

• KB is sequences of sentences
(all implicitly conjoined)

• All sentences must be horn
• Can use constants, variables, or functions
• Queries can include conjunctions or disjunctions
• Cannot assert negations

– Closed world assumption
– Everything not implied by the KB is assumed false

Prolog Syntax

• Variables are upper case
• Constants are lower case
• Implication :-
• Universal quantification is implicit
• Sentences are terminated with a .
• Specify RHS first:  Mortal(X):-Man(X)
• Conjunction with ,: Mortal(X):-Man(X),Living(X).
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Prolog UI

• Load a database using consult
• Consult(user) loads database from the 

command line ctrl-d to terminal
• Consult(file) loads database from a file.
• Some prologs use [file].

Prolog Bindings

• Use = to check if two bindings are same

• Use \== to check if they are different

• Hit enter at the end of query to stop search

• Use ; to get multiple answers
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Some Prolog Data Types

• Lists [Head|Tail]
– Head is bound to first element of list
– Tail is bound to remainder of list

• Numbers
– Numbers are assigned with “is”
– Checked with =, =<, =>

Prolog Implementation

• Inferences are done with backward chaining

• Conjuncts are tried in left to right order
(as entered in the KB)

• Tries implications in order they are entered 

• Occupies a weird space between declarative and 
procedural programming
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Weird/Interesting Stuff About Prolog

• Purely declarative (or purely functional) framework for 
programming leaves little room for “side effects” such as 
graphics, file output, etc.

• but…   Prolog has lots of back doors that let you step outside of 
the purely declarative framework

• Prolog is Turing Complete
• Prolog programmers must be continually aware of the operation 

of the theorem proving engine
• You can easily write prolog programs that go into infinite loops, 

and it will not be obvious why this is happening until you have 
fully internalized the way the theorem prover works

Prolog Redux
• Despite its coolness and potential power, prolog is not widely used today

– Horn restrictions are awkward in practice
– Knowledge representation is hard in general
– Alien paradigm to many, and awkward for things other than logic queries

• Prolog concepts live on in a restricted form in the database query 
language datalog:

– Subset of prolog
– Efficient implementations exist

• Datalog is used primarily for database research, but datalog concepts 
have influenced mainstream database implementations


