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What are Linear Programs?

Linear programs are constrained optimization problems
Constrained optimization problems ask us to maximize or
minimize a function subject to mathematical constraints on
the variables

— Convex programs have convex objective functions and convex
constraints

— Linear programs (special case of convex programs) have linear
objective functions and linear constraints

LPs = generic language for wide range problems
LP solvers = widely available hammers

Entire classes and vast expertise invested in making
problems look like nails
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Real-World Applications
* Railroads — freight car allocation

* Agriculture — optimal mix of crops to plant

* Warfare — logistics, optimal mix of defensive assets,
allocation of resources (LP techniques influenced by
WWII problems)

* Networking — capacity management

* Microchips — Optimization of component placement

Photo: Public Domain, https://commons.wikimedia.org/w/index.php?curid=17040973

Linear programs: example

* Make reproductions of 2 paintings

maximize 3x + 2y

subject to
Ax +2y < 16
Painting 1: X+ 2y <8
*  Sells for $30
<
* Requires 4 units of blue, 1 green, 1 red X+ y - 5
Painting 2 X > O
*  Sells for $20
* Requires 2 blue, 2 green, 1 red y 2 O

We have 16 units blue, 8 green, 5 red
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Solving the linear program graphically

maximize 3x + 2y

subject to
4x + 2y <16 ;
X+2y<8
X+y<5 4 optimal solution:
x>0 v

N

y=0

Feasible region = region not violating constraints

Linear Programs (max formulation)

maximize:c’ x
subjectto: Ax<b
x>0

* Note: min formulation also possible
— Min: c'x
— Subject to: Ax>b
* Some use equality as the canonical representation
(introducing slack variables)
e LPtricks
— Multiply by -1 to reverse inequalities
— Can easily introduce equality constraints
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Solving LPs in Practice

* Use commercial products like cplex or gurobi
(there is even an Excel plug-in)

Don’t implement LP solver yourself!

Do not use Matlab’s linprog for anything other
than small problems. Really. No — REALLY!

LP Solvers run in (weakly) polynomial time

Photo taken by Liane Moeller - Chris Barnes, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9016956

What is Game Theory? |

* Very general mathematical framework to study situations
where multiple agents interact, including:
— Popular notions of games

— Everything up to and including multistep, multiagent,
simultaneous move, partial information games

— Example Duke CS research: Aiming sensors to catch hiding
enemies, assigning guards to posts

— Can even include negotiating, posturing and uncertainty about
the players and game itself

* von Neumann and Morgenstern (1944) was a major
launching point for modern game theory

* Nash: Existence of equilibria in general sum games

(wikipedia|
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What is game theory? Il

Study of settings where multiple agents each have
— Different preferences (utility functions),
— Different actions

Each agent’s utility (potentially) depends on all agents’ actions
— What is optimal for one agent depends on what other agents do
— Can be circular

Game theory studies how agents can rationally form beliefs over
what other agents will do, and (hence) how agents should act

Useful for acting and (potentially) predicting behavior of others

Not necessarily descriptive

Real World Game Theory Examples

* War

* Auctions

* Animal behavior

* Networking protocols

* Peer to peer networking behavior
* Road traffic

* Mechanism design:
— Suppose we want people to do X?
— How to engineer situation so they will act that way?
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Rock, Paper, Scissors Zero Sum Formulation

* In zero sum games, one player’s loss is other’s gain

* Payoff matrix: > D

R P
& R 0 -1 1
1 0 4
_dos -1 1 0

* Minimax solution maximizes worst case outcome

Rock, Paper, Scissors Equations

* R,P,S = probability that we play rock, paper, or
scissors respectively (R+P+S =1)
* U is our expected utility
* Bounding our utility:
— Opponent rock case: U<P-S
— Opponent paper case: USS—R
— Opponent scissors case: USR—-P
e Want to maximize U subject to constraints
e Solution: (1/3,1/3,1/3)
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Rock, Paper, Scissors LP Formulation

e Our variables are: x=[U,R,P,S]"
* We want:
— Maximize U
—U<P-S
—U<S-R
—U<LR-P
_R4P4S = 1 maximize: ¢’ x
* How do we make this fit: |subject to: Ax<b ?

x>0

Rock Paper Scissors LP Formulation

x=[U,R,P,ST
1 0 -1 1 -
1 1 0 -1 maximize:c X
A=l 1 -1 1 0 )
o 1 1 1 subjectto: Ax<b
0 -1 -1 -1 ‘x>0
b = [01010;11_1]T
c=[1,0,0,0]

Firstrowof Ax: U—-P+S< 0




Rock, Paper, Scissors Solution

If we feed this LP to an LP solver we get:
— R=P=5=1/3

- U=0

Solution for the other player is:

— The same...

— By symmetry

This is the minimax solution

This is also an equilibrium

— No player has an incentive to deviate

— (Defined more precisely later)

Tangent: Why is RPS Fun?

* OK, it’s not...

* Why might RPS be fun?
— Try to exploit non-randomness in your friends
— Try to be random yourself
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Generalizing

We can solve any two player, simultaneous move,
zero sum game with an LP

— One variable for each of player 1’s actions

— Variables must be a probability distribution
(constraints)

— One constraint for each of player 2’s actions (Player 1’s
utility must be less than or equal to outcome for each
player 2 action.)

— Maximize player 1’s utility

Can solve resulting LP using an LP solver in time
that is polynomial in total number of actions

Minimax Solutions in General

What do we know about minimax solutions?
— Can a suboptimal opponent trick minimax?
— When should we abandon minimax?

Minimax solutions for 2-player zero-sum games can always be
found by solving a linear program

The minimax solutions will also be equilibria (more on that later)

For general sum games:
— Minimax does not apply
— Solutions (equilibria) may not be unique

— Need to search for equilibria using more computationally intensive
methods
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General Sum Games

“Chicken”

e Two players drive cars towards each other
e If one player goes straight, that player wins
e If both go straight, they both die

not zero-sum
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Reasoning About General Sum Games

e Can’t approach as an optimization problem

* Minimax doesn’t apply

— Other players’ objectives might be aligned w/ yours
— Might be

* Need a solution concept where each players is
“satisfied” WRT his/her objectives

Rock-paper-scissors — Seinfeld variant

6y MICKEY: All right, rock beats paper!

. (Mickey smacks Kramer's hand for losing)
KRAMER: | thought paper covered rock.
MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?

MICKEY: (looks at hand) Nothing beats rock.

m ] A
50, 0[1,-11, -1
S [)[1,1]0,0 1, 1

_2-1,1/1,-1]0,0

about game solutions.
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Dominance
* Player i’s strategy s; strictly dominates s; if
—for any s, ui(s;, s.) > ui(s/, s4)
* s; weakly dominates s;’ if
—foranys,, u(s;,s,) = ugs’, s.); and
—for some s, uy(s;, s.;) > ui(s/, s.)

] A

-i = “the player(s) other
than i”

weisoronce - | 0,0 11, =111, -1

weak dominance D '1, 1 O, O '1, 1

_2-1,111,-1]0,0

Prisoner’s Dilemma
e Pair of criminals has been caught
e District attorney has evidence to convict them of a minor

crime (1 year in jail); knows that they committed a major
crime together (3 years in jail) but cannot prove it

e Offers them a deal:
— If both confess to the major crime, they each get a 1 year reduction
— If only one confesses, that one gets 3 year reduction

SN

confess don’t confess

(_ confess _2, -2 O, -3
don’t confess -3, 0 -1, -1
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“Should | buy an SUV?”

purchasing + gas cost accident cost

@ cost: 5

lterated dominance

* Iterated dominance: remove (strictly/weakly)
dominated strategy, repeat

* |terated strict dominance on Seinfeld’s RPS:

= U
C!O,O 1,-11, -1 !
J|-1,1/ 0,0 |-1, 1 —> C-1’1 0,0
A-1,111,-110,0 | —
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Mixed strategies

Mixed strategy for player i = probability distribution
over player i’s (pure) strategies

E.g. 1/3188 1/3 G 1/3,

Example of dominance by a mixed strategy:

1/21 3,01 0,0
/210,01 3,0
1,01 1,0

Best Responses

* Let A be a matrix of player 1’s payoffs
* Let o, be a mixed strategy for player 2

o, = vector of expected payoffs for each pure strategy
for player 1

* Highest entry indicates best response for player 1
* Any mixture of ties is also BR, but can only tie a pure BR
* Generalizes to >2 players

10 11 62
,-11-5,-5
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Nash equilibrium [Nash 50]

* A vector of strategies (one for each player) = a strategy profile

* Strategy profile (04, 03, ..., 0,) is @ Nash equilibrium if each o;is a
best response to o
— Thatis, for any i, for any o}, u;(o;, 0.) 2 uj(o;, o)
* Does not say anything about multiple agents changing their
strategies at the same time

* Inany (finite) game, at least one Nash equilibrium (possibly using
mixed strategies) exists [Nash 50]

* (Note - singular: equilibrium, plural: equilibria)

Equilibrium Strategies
VS.
Best Responses

* equilibrium strategy -> best response?

* best response -> equilibrium strategy?

* Consider Rock-Paper-Scissors
— Is(1/3, 1/3, 1/3) a best response to (1/3, 1/3, 1/3)? ! Q go
— Is (1, 0, 0) a best response to (1/3, 1/3, 1/3)? k

— Is (1, 0, 0) a strategy for any equilibrium?

,%:Dg@ -1,111,-1] 0,0
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Nash equilibria of “chicken”

o — =

D S
p|0,0]-1,1
s|1,-1/-5, -5

e (D, S) and (S, D) are Nash equilibria
— They are pure-strategy Nash equilibria: nobody randomizes

— They are also strict Nash equilibria: changing your strategy will make you
strictly worse off

* No other pure-strategy Nash equilibria

Equilibrium Selection
S ﬁ )
D M\
D S
p|0,0]-1,1
s|1,-1/-5, -5

e (D, S) and (S, D) are Nash equilibria

e Which do you play?

e What if player 1 assumes (S, D), player 2 assumes (D, S)
e Playis(S,S)=(-5,-5)!!!

e This is the equilibrium selection problem

4/20/22
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Nash equilibria of “chicken”...
D S

p|0,0] -1, 1
s|1,-1/-5, -5

Is there a Nash equilibrium that uses mixed strategies -- say, where player 1 uses a
mixed strategy?

If a mixed strategy is a best response, then all of the pure strategies that it
randomizes over must also be best responses

So we need to make player 1 indifferent between D and S -
-p% = probability

Player 1’s utility for playing D = -p% that column

Player 1’s utility for playing S = pp- 5p% = 1- 6p<s player plays s

So we need -p% = 1- 6p°; which means p=1/5

Then, player 2 needs to be indifferent as well

Mixed-strategy Nash equilibrium: ((4/5D, 1/5S), (4/5 D, 1/5 S))
— People may die! Expected utility -1/5 for each player

Computational Issues

e Zero-sum games - solved efficiently as LP

* General sum games may require exponential
time (in # of actions) to find a single

equilibrium (no known efficient algorithm and good
reasons to suspect that none exists)

* Some better news: Despite bad worst-case
complexity, many games can be solved quickly

4/20/22
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Game Theory Issues

* How descriptive is game theory?
— Some evidence that people play equilibria
— Also, some evidence that people act irrationally

— If it is computationally intractable to solve for equilibria of
large games, seems unlikely that people are doing this

* How reasonable is (basic) game theory?
— Are payoffs known?

— Are situations really simultaneous move with no
information about how the other player will act?

— Are situations really single-shot? (repeated games)
— How is equilibrium selection handled in practice?

Extensions

Partial information

Uncertainty about the game parameters, e.g., payoffs

(Bayesian games)

Repeated games: Simple learning algorithms can converge to
equilibria in some repeated games

Multistep games with distributions over next states (game theory +
MDPs = stochastic games)

Multistep + partial information (Partially observable stochastic games)

Game theory is so general, that it can encompass essentially all
aspects of strategic, multiagent behavior, e.g., negotiating, threats,
bluffs, coalitions, bribes, etc.

4/20/22
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Conclusions

Game theory tells us how to act in strategic situations —
different agents with different goals acting with
awareness of other agents

Zero sum case is relatively easy

General sum case is computationally hard — some nice
results for special cases

Extensions address some shortcomings/assumptions of
basic model but at additional computational cost
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