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With thanks to Kris Hauser for some slides

The Winding Path to 
Reinforcement Learning

• Decision Theory

• Markov Decision Processes

• Reinforcement Learning

• Descriptive theory of optimal behavior

• Mathematical/Algorithmic realization of 
Decision Theory

• Application of learning techniques to 
challenges of MDPs with numerous or 
unknown parameters
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Swept under the rug today

• Utility of money (assumed 1:1)

• How to determine costs/utilities

• How to determine probabilities

Playing a Game Show

• Assume series of questions
– Increasing difficulty
– Increasing payoff

• Choice:
– Accept accumulated earnings and quit
– Continue and risk losing everything

• “Who wants to be a millionaire?”
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Simplified Graphical Notation

A1 A2

p1 p2 p3
p4

A1

p1

p2

p3A2
p4

State Representation

Start
$100

$0 $0 $0 $0

$100 $1,100 $11,100

$61,100

Dollar amounts
indicate the payoff
for getting the 
question right

Downward green
arrows indicate 
the choice to exit
the game

Green indicates
profit at exit from
game

Probabilistic Transitions on Attempt to Answer

1 correct
$1,000

2 correct
$10K

3 correct
$50K

N.B.:  These exit transitions
should actually correspond to states
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Making Optimal Decisions

• Work backwards from future to present

• Consider $50,000 question
– Suppose P(correct) = 1/10
– V(stop)=$11,100
– V(continue) = 0.9*$0 + 0.1*$61.1K = $6.11K

• Optimal decision stops

Working Backwards

$0 $0 $0 $0

$100 $1,100 $11,100

1/10
X

V=$11.1K

1/2

X

V=$5,555

3/4

V=$4,166

X

V=$3,749

9/10
$100 $1K $10K $50K

Red X indicates bad choice
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Dealing with Loops

$0 $0 $0 $0

$100 $1,100 $11,100

1/101/23/4

Suppose you can pay $1000 (from any losing state) to play again

$-1000

9/10

From Policies to Linear Systems

• Suppose we always pay until we win.
• What is value of following this policy?

!!!!

€ 

V(s0 ) = 0.10(−1000+V(s0 )) + 0.90V(s1)
V(s1) = 0.25(−1000+V(s0 )) + 0.75V(s2 )
V(s2 ) = 0.50(−1000+V(s0 )) + 0.50V(s3 )
V(s3 ) = 0.90(−1000+V(s0 )) + 0.10(61100)

Return to Start Continue



6

And the solution is…

1/101/23/4

$-1000

V=$34.43KV=$32.95KV=$32.58KV=$32.47K

w/o
cheat

9/10

Is this optimal?
How do we find the optimal policy?

V=$11.11KV=$5,555V=$4,166V=$3,749

The MDP Framework
• State space: S
• Action space: A
• Transition function:  P
• Reward function: R(s,a,s’) or R(s,a) or R(s)
• Discount factor: 
• Policy:  

g

as ®p )(

Objective:  Maximize expected, discounted return 
(decision theoretic optimal behavior)
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Applications of MDPs

• AI/Computer Science
– Robotic control

(Koenig & Simmons, Thrun et al., Kaelbling et al.)
– Air Campaign Planning (Meuleau et al.)
– Elevator Control (Barto & Crites)
– Computation Scheduling (Zilberstein et al.)
– Control and Automation (Moore et al.)
– Spoken dialogue management (Singh et al.)
– Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

• Economics/Operations Research
– Fleet maintenance (Howard, Rust)
– Road maintenance (Golabi et al.)
– Packet Retransmission (Feinberg et al.)
– Nuclear plant management  (Rothwell & Rust)
– Debt collection strategies (Abe et al.)
– Data center management (DeepMind)
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Applications of MDPs

• EE/Control
– Missile defense (Bertsekas et al.)
– Inventory management (Van Roy et al.)
– Football play selection (Patek & Bertsekas)

• Agriculture
– Herd management (Kristensen, Toft)

• Other
– Sports strategies
– Board games
– Video games

The Markov Assumption

• Let St be a random variable for the state at time t

• P(St|At-1St-1,…,A0S0) = P(St|At-1St-1)

• Markov is special kind of conditional independence

• Future is independent of past given current state, action
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Understanding Discounting

• Mathematical motivation
– Keeps values bounded
– What if I promise you $0.01 every day you visit me?

• Economic motivation
– Discount comes from inflation
– Promise of $1.00 in future is worth $0.99 today

• Probability of dying (losing the game)
– Suppose e probability of dying at each decision interval
– Transition w/prob e to state with value 0
– Equivalent to 1- e discount factor

Value Determination

å+=
'

)'())(,|'())(,()(
s

sVsssPssRsV pp pgp

Bellman Equation for a fixed policy p

S1

S2

S3

0.4

0.6

R=1

))(6.0)(4.0(1)( 321 sVsVsV ppp g ++=

Determine the value of each state under policy p
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Matrix Form

÷
÷
÷

ø

ö

ç
ç
ç

è
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sssPsssPsssP
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sssPsssPsssP

ppp
ppp
ppp

pP

pppp g RVPV +=
Generalization of the game show example from earlier

How to solve this system efficiently?  Does it even have a solution?

Solving for Values

pppp g RVPV +=
For moderate numbers of states we can solve this system exacty:

ppp g RPIV 1)( --=

Guaranteed invertible because
has spectral radius <1

pgP
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Iteratively Solving for Values

pppp g RVPV +=

For larger numbers of states we can solve this system indirectly:

pppp g RVPV +=+ ii 1

Guaranteed convergent because
has spectral radius <1

pgP

Converges to Vp, which we call a fixed point because updates
Don’t change the value any more

Interpreting the Iterations

• Suppose Vp0 = 0, and R is defined on (s,a) 
• Then Vp1 = Rp (value of executing 1 step of p)
• Vp2 = Rp+gPpVp1 = Rp+gPpRp

(expected value of executing 2 steps of p)
• Vp3 = Rp+gPpVp2 = Rp+gPpRp + g2(Pp)2Rp

(expected value of executing 2 steps of p)
• Can interpret these as the value of a finite horizon 

problem, where everything stops after i steps
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Interpretation Continued

• Vp∞ =(I-gPp)-1R=Vp=infinite horizon values
• Infinite horizon = value of running p forever

• Nota bene: This interpretation applies 
when Vp0 = 0, but iteration converges to Vp
for any choice of Vp0

Establishing Convergence

• Eigenvalue analysis

• Monotonicity
– Assume all values start pessimistic
– One value must always increase
– Can never overestimate
– Easy to prove

• Contraction analysis… 
(slides included but not discussed in interest of time)
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Contraction Analysis

• Define maximum norm

• Consider two value functions Va and Vb each at 
iteration 1:

• WLOG say

|][|max iVV i=
¥

e
!

+£ ba VV 11

e=-
¥

ba VV 11

(Vector of all e’s)

Contraction Analysis Contd.

• At next iteration for Vb:

• For Va

• Conclude:

V2
a =R+γP(Va

1 )≤R+γP(V1
b +
!
ε )=R+γPV1

b +γP
!
ε =R+γPV1

b +γ
!
ε

V2
b =R +γPV1

b

V2
a −V2

b

∞
≤γε

Distribute
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Importance of Contraction

• Any two value functions get closer

• True value function V* is a fixed point
(value doesn’t change with iteration)

• Max norm distance from V* decreases 
dramatically quickly with iterations

V0 −V
*

∞
=ε→ Vn −V

*

∞
≤γ nε

Finding Good Policies

Suppose an expert told you the “true value” of each state:

V(S1) = 10 V(S2) = 5

S1

S2

Action 1

0.5

0.5

S1

S2

Action 2

0.7

0.3
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Improving Policies

• How do we get the optimal policy?
• If we knew the values under the optimal policy, then just take the 

optimal action in every state
• How do we define these values?
• Fixed point equation with choices (Bellman equation):

V *(s)=maxa R(s,a)+γ P(s'|s,a)V *(s')
s'∑

Decision theoretic optimal choice given V*
If we know V*, picking the optimal action is easy
If we know the optimal actions, computing V* is easy
How do we compute both at the same time?

Value Iteration

å+=+ '1 )'(),|'(),(max)(
s iai sVassPasRsV g

•Called value iteration or simply successive approximation
•Same as value determination, but we can change actions

•Convergence:
• Can’t do eigenvalue analysis (not linear)
• Still monotonic
• Still a contraction in max norm (fun exercise)
• Converges quickly

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?



16

Robot Navigation Example

§ The robot (shown    ) lives in a world described by a 4x3 grid of squares 
with square (2,2) occupied by an obstacle

§ A state is defined by the square in which the robot is located: (1,1) in the 
above figure 
® 11 states

3

2

1

4321

square(3,2)

ELSEVIER 1999/05/05 Prn:27/09/1999; 15:22 F:AIJ1675.tex; VTEX/PS p. 2 (149-212)

2 W. Burgard et al. / Artificial Intelligence 00 (1999) 1–53

1. Introduction

Ever since the Czech novelist Karel Čapek invented the term “robot” [154]—which
was later popularized by Isaak Asimov [2,3]—the dream of building autonomous robots—
willing, intelligent and human-like machines that make life pleasant by doing the type
work we don’t like to do—has been an active dream in people’s minds. With universal
personal robots still far beyond reach, we are currently witnessing a rapid revolution in
robots that directly interact with people and affect their lives (see, e.g., [128,155]). This
paper describes one such robot, which is really just a step in this direction. Presented here
is the software architecture of an interactive robot named RHINO, which has been built to
assist and entertain people in public places, such as museums. RHINO is shown in Fig. 1.
Its primary task is to give interactive tours through an exhibition, providing multi-modal
explanations to the various exhibits along the way (verbal, graphical, sound). In May 1997,
RHINO was deployed in the “Deutsches Museum Bonn” (see Fig. 2). During a six-day
installation period the robot gave tours to more than 2,000 visitors. Through an interactive
Web-Interface, people from all over the world could watch the robot’s operation and even
control its operation—and more than 2,000 did.
On the software side, on which this article focuses, RHINO employs some of the most

recent developments in the field of artificial intelligence (AI) and robotics. At its core,
RHINO relies upon data-driven probabilistic representation and reasoning to cope with the
uncertainties that necessarily arise in complex and highly dynamic environments. RHINO
can also learn models (maps) of its environment and change its plans on-the-fly. It is
equipped with an easy-to-understand multi-modal user interface, and it can react to the
presence of people in various ways.
The necessity to employ state-of-the-art AI technology arose from the complexity of

the task domain. The majority of RHINO’s users were complete novices in robotics; yet,
since the typical tour lasted for less than ten minutes, appealing to visitors’ intuition was
essential for the success of the concept. RHINO’s environment, the museum, was densely
populated.Most of the time, RHINO was “lucky” in that it lead the way when giving a tour
with people following. At times, however, we counted more than a hundred people that

Fig. 1. The robot and its sensors. Fig. 2. RHINO, pleasing the crowd.

From Burgard et al., 
“Experiences with an interactive museum tour-guide robot”

Action (Transition) Model
3

2

1

4321

U brings the robot to:
• (1,2) with probability 0.8
• (2,1) with probability 0.1
• (1,1) with probability 0.1

§ In each state, the robot’s possible actions are {U, D, R, L}
§ For each action:

• With probability 0.8 the robot does the right thing (moves up, down, 
right, or left by one square)

• With probability 0.1 it moves in a direction perpendicular to the 
intended one

• If the robot can’t move, it stays in the same square
[This model satisfies the Markov condition]
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Action (Transition) Model

§ In each state, the robot’s possible actions are {U, D, R, L}
§ For each action:

• With probability 0.8 the robot does the right thing (moves up, down, 
right, or left by one square)

• With probability 0.1 it moves in a direction perpendicular to the 
intended one

• If the robot can’t move, it stays in the same square
[This model satisfies the Markov condition]

3

2

1

4321

L brings the robot to:
• (1,1) with probability 0.8 + 0.1 = 0.9
• (1,2) with probability 0.1

Terminal States, Rewards, and Costs

§ Two terminal states: (4,2) and (4,3)
§ Rewards:

• R(4,3) = +1 [The robot finds gold]
• R(4,2) = -1 [The robot gets trapped in quicksand]
• R(s) = -0.04 in all other states

• This example (from the Russell & Norvig text) assumes no discounting (g=1)
• Discussion: Is this a good modeling decision?

3

2

1

4321

+1

-1

-.04

-.04 -.04-.04

-.04

-.04

-.04

-.04

-.04 “terminal” states
Not part of formal
MDP specification.
Usually handled by
forcing state to have a
fixed value, e.g. +1
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(Stationary) Policy

§ A stationary policy is a complete map 𝜋: state ® action
§ For each non-terminal state it recommends an action, independent of when 

and how the state is reached

§ Under the Markov and infinite horizon assumptions, the optimal policy 𝜋∗ is 
necessarily a stationary policy 
[The best action in a state does not depend on the past]

3

2

1

4321

+1

-1

3

2

1

4321

+1

-1

(Stationary) Policy

§ A stationary policy is a complete map 𝜋: state ® action
§ For each non-terminal state it recommends an action, independent of when 

and how the state is reached

§ Under the Markov and infinite horizon assumptions, the optimal policy 𝜋∗ is 
necessarily a stationary policy
[The best action in a state does not depend on the past]

3

2

1

4321

+1

-1

The optimal policy tries to avoid 
“dangerous” state (3,2)

3

2

1

4321

+1

-1
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Optimal Policies for Various R(s)

+1

-1

+1

-1

R(s) = -0.01

+1

-1

+1

-1

R(s) = -0.04 R(s) = -2

R(s) > 0

3

2

1

4321

+1

-1

Bellman Equation

§ If s is terminal:
𝑉(𝑠) = 𝑅(𝑠)

§ If s is non-terminal:

𝑉 𝑠 = 𝑅 𝑠 + max
"∈$%%&(()

*
(*∈+,--((,")

𝑃 𝑠* 𝑠, 𝑎 𝑉(𝑠*)

[Bellman equation]

§ 𝜋∗ 𝑠 = arg max
"∈$%%&(()

∑(*∈+,--((,")𝑃 𝑠* 𝑠, 𝑎 𝑉(𝑠*)

The utility of s depends on 
the utility of other states s’
(possibly, including s), and 
vice versa

Appl(s) used
if not all actions
are defined in 
all states
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Value Iteration Applied

1. Initialize the utility of each non-terminal states to V0(s) = 0 

2. For t = 0, 1, 2, ... do

𝑉/01 𝑠 = 𝑅 𝑠 + max
"∈$%%&(()

*
(*∈+,--((,")

𝑃 𝑠* 𝑠, 𝑎 𝑉/(𝑠*)

for each non-terminal state s

3

2

1

4321

+1

-10

0000

0

00 0 3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92

State Utilities/Values

§ The utility of a state s is the maximal expected amount of reward that 
the robot will collect from s and future states by executing some action 
in each encountered state, until it reaches a terminal state (infinite 
horizon)

§ Under the Markov and infinite horizon assumptions, the utility of s is 
independent of when and how s is reached
[It only depends on the possible sequences of states after s, not on the 
possible sequences before s]

3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92
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Convergence of Value Iteration

3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92

Properties of Value Iteration
• VI converges to V* ( . 2 from V* shrinks by g factor each iteration)

• Converges to optimal policy

• Why?  (Because we figure out V*, optimal policy is argmax)

• Optimal policy is stationary (i.e. Markovian – depends only on current state)

• Why? (Because we are summing utilities.  Thought experiment:  Suppose 
you think it’s better to change actions the second time you visit a state.  
Why didn’t you just take the best action the first time?)
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Policy Iteration

Greedy Policy Construction

Let’s name the action that looks best WRT V:

!!

€ 

πv (s) = argmaxa R(s,a) + γ P(s' | s,a)V(s')
s'

∑

Expectation over
next-state values

!!!!

€ 

πv = greedy(V)
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Bootstrapping:  Policy Iteration

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Guess pv=p0

Idea:  Greedy selection is useful even with suboptimal V

Vp = value of acting on p
(solve linear system)

pv¬greedy(Vp)

Repeat until
policy doesn’t
change

Comparing VI and PI

• VI
– Value changes at every step
– Policy may change before exact value of policy is computed
– Many relatively cheap iterations

• PI
– Alternates policy/value updates
– Solves for value of each policy exactly
– Fewer, slower iterations (need to invert matrix)

• Convergence
– Both are contractions in max norm
– PI is shockingly fast (small number of iterations) in practice
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Computational Complexity

• VI and PI are both contraction mappings w/rate g
(we didn’t prove this for PI in class)

• VI costs less per iteration

• For n states, a actions PI tends to take O(n) iterations in practice
– Recent results indicate ~O(n2a/1-g) worst case
– Interesting aside:  Biggest insight into PI came ~50 years after the algorithm 

was introduced

A Unified View of
Value Iteration and Policy Iteration
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Notation

• Update for for a fixed policy – definition of 
Tp operator (matrix-vector form):

• Update with policy improvement –
definition of the T operator:

𝑇1𝑉 ≡ 𝑅1 + 𝛾𝑃1𝑉

𝑇𝑉(𝑠) = max
2
𝑟 𝑠, 𝑎 + 𝛾2

34

𝑃 𝑠4 𝑠, 𝑎 𝑉(𝑠4)

Value Determination

• For 0 steps

• For i steps

• Infinite horizon

𝑉" = 𝑅#

𝑉$ = 𝑇#𝑉$%& = 𝑇# $𝑅#

lim
/→1

𝑉/ = 𝑇2 1𝑅2 = (1 − 𝛾𝑃2)34𝑅2 = 𝑉2



26

Value Iteration

• For 0 steps

• For i steps

• Infinite horizon

𝑉" = 𝑅

𝑉$ = 𝑇𝑉$%& = 𝑇$𝑅

lim
$→(

𝑉$ = 𝑇(𝑅 = 𝑇𝑉∗ = 𝑉∗

(If R depends on a, pick a with 
the highest immediate reward)

Modified Policy Iteration

• Guess V0 (usually just R), and p
• i=1
• Repeat until convergence*

– For j=1 to n
• Vi = TpVi-1

• i = i+1

– p =greedy(Vi-1)

• Special cases: n=1 (VI), n⟶∞ (PI)

n steps of iterative 
policy evaluation
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MDP Limitations  →
Reinforcement Learning

• MDP operate at the level of states
– States = atomic events
– We usually have exponentially (or infinitely) many of these

• We assume P and R are known

• Machine learning to the rescue!
– Infer P and R (implicitly or explicitly from data)
– Generalize from small number of states/policies


