Markov Decision Processes (MDPs)

Ron Parr CompSci 370 Department of Computer Science Duke University

With thanks to Kris Hauser for some slides

Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"

Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)
- Other
 - Sports strategies
 - Board games
 - Video games

- Let S_t be a random variable for the state at time t
- $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state, action

Understanding Discounting

• Mathematical motivation

- Keeps values bounded
- What if I promise you \$0.01 every day you visit me?
- Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today

• Probability of dying (losing the game)

- Suppose ϵ probability of dying at each decision interval
- Transition w/prob ϵ to state with value 0
- Equivalent to 1- ϵ discount factor

Matrix Form

$$\mathbf{P}^{\pi} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

Generalization of the game show example from earlier

How to solve this system efficiently? Does it even have a solution?

Interpretation Continued

- $V_{\infty}^{\pi} = (I \gamma P^{\pi})^{-1}R = V^{\pi} = \text{infinite horizon values}$
- Infinite horizon = value of running π forever
- Nota bene: This interpretation applies when $V^{\pi}_0 = 0$, but iteration converges to V^{π} for any choice of V^{π}_0

Computational Complexity

- VI and PI are both contraction mappings w/rate γ (we didn't prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take O(n) iterations in practice
 - Recent results indicate $\sim O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

A Unified View of Value Iteration and Policy Iteration

Value Iteration• For 0 steps $V_0 = R$ (If R depends on a, pick a with the highest immediate reward)• For i steps $V_i = TV_{i-1} = T^i R$

• Infinite horizon $\lim_{i \to \infty} V_i = T^{\infty}R = TV^* = V^*$

MDP Limitations → Reinforcement Learning

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies