Markov Decision Processes (MDPs)

Ron Parr
CompSci 370
Department of Computer Science
Duke University

With thanks to Kris Hauser for some slides

The Winding Path to Reinforcement Learning

• Decision Theory
• Markov Decision Processes
• Reinforcement Learning

• Descriptive theory of optimal behavior
• Mathematical/Algorithmic realization of Decision Theory
• Application of learning techniques to challenges of MDPs with numerous or unknown parameters
Swept under the rug today

• Utility of money (assumed 1:1)

• How to determine costs/utilities

• How to determine probabilities

Playing a Game Show

• Assume series of questions
 – Increasing difficulty
 – Increasing payoff

• Choice:
 – Accept accumulated earnings and quit
 – Continue and risk losing everything

• “Who wants to be a millionaire?”
Simplified Graphical Notation

[Diagram showing simplified graphical notation with nodes A1, A2, p1, p2, p3, p4, and arrows indicating probabilistic transitions.]

State Representation

[Diagram showing state representation with nodes Start $100, 1 correct $1,000, 2 correct $10K, 3 correct $50K, and downward green arrows indicating the choice to exit the game. Dollar amounts indicate the payoff for getting the question right. Downward green arrows indicate the choice to exit the game. N.B.: These exit transitions should actually correspond to states. Green indicates profit at exit from game.]
Making Optimal Decisions

- Work backwards from future to present

- Consider $50,000 question
 - Suppose $P(\text{correct}) = 1/10$
 - $V(\text{stop}) = $11,100
 - $V(\text{continue}) = 0.9*0 + 0.1*$61.1K = $6.11K$

- Optimal decision stops

Working Backwards

$V = $3,749 $V = $4,166 $V = $5,555 $V = $11.1K

$100 \rightarrow 9/10 \rightarrow 1K \rightarrow 3/4 \rightarrow 10K \rightarrow 1/2 \rightarrow 50K \rightarrow 1/10 \rightarrow 0$

100 $1,100$ $11,100$

Red X indicates bad choice
Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again.

From Policies to Linear Systems

- Suppose we always pay until we win.
- What is value of following this policy?

\[
V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1)
\]
\[
V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2)
\]
\[
V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3)
\]
\[
V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100)
\]
And the solution is...

\[
\begin{align*}
V &= \$3,749 \\
\downarrow & \\
V &= \$32.47K \\
\downarrow & \\
V &= \$32.47K \\
\downarrow & \\
V &= \$11.11K \\
\downarrow & \\
V &= \$34.43K \\
\downarrow & \\
V &= \$32.95K \\
\downarrow & \\
V &= \$32.58K \\
\downarrow & \\
V &= \$4,166 \\
\downarrow & \\
V &= \$5,555 \\
\downarrow & \\
V &= \$3,749 \\
\downarrow & \\
V &= \$32.47K \\
\downarrow & \\
V &= \$32.47K \\
\downarrow & \\
V &= \$11.11K \\
\downarrow & \\
V &= \$34.43K \\
\downarrow & \\
V &= \$32.95K \\
\downarrow & \\
V &= \$32.58K \\
\downarrow & \\
V &= \$4,166 \\
\downarrow & \\
V &= \$5,555 \\
\downarrow & \\
V &= \$3,749 \\
\downarrow & \\
V &= \$32.47K \\
\downarrow & \\
V &= \$32.47K \\
\downarrow & \\
V &= \$11.11K \\
\downarrow & \\
V &= \$34.43K \\
\downarrow & \\
V &= \$32.95K \\
\downarrow & \\
V &= \$32.58K \\
\downarrow & \\
V &= \$4,166 \\
\downarrow & \\
V &= \$5,555 \\
\downarrow & \\
V &= \$3,749
\end{align*}
\]

w/o cheat

Is this optimal?
How do we find the optimal policy?

The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: R(s,a,s’) or R(s,a) or R(s)
- Discount factor: \(\gamma \)
- Policy: \(\pi(s) \rightarrow a \)

Objective: Maximize expected, discounted return
(decision theoretic optimal behavior)
Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)
 - Debt collection strategies (Abe et al.)
 - Data center management (DeepMind)
Applications of MDPs

• EE/Control
 – Missile defense (Bertsekas et al.)
 – Inventory management (Van Roy et al.)
 – Football play selection (Patek & Bertsekas)

• Agriculture
 – Herd management (Kristensen, Toft)

• Other
 – Sports strategies
 – Board games
 – Video games

The Markov Assumption

• Let S_t be a random variable for the state at time t

• $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$

• Markov is special kind of *conditional independence*

• Future is independent of past given current state, *action*
Understanding Discounting

- Mathematical motivation
 - Keeps values bounded
 - What if I promise you $0.01 every day you visit me?

- Economic motivation
 - Discount comes from inflation
 - Promise of $1.00 in future is worth $0.99 today

- Probability of dying (losing the game)
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ε to state with value 0
 - Equivalent to $1 - \varepsilon$ discount factor

Value Determination

Determine the value of each state under policy π

$$V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) V^\pi(s')$$

Bellman Equation for a fixed policy π

$$V^\pi(s_1) = 1 + \gamma(0.4V^\pi(s_2) + 0.6V^\pi(s_3))$$
Matrix Form

\[P^\pi = \begin{pmatrix}
P(s_1 | s_1, \pi(s_1)) & P(s_2 | s_1, \pi(s_1)) & P(s_3 | s_1, \pi(s_1)) \\
P(s_1 | s_2, \pi(s_2)) & P(s_2 | s_2, \pi(s_2)) & P(s_3 | s_2, \pi(s_2)) \\
P(s_1 | s_3, \pi(s_3)) & P(s_2 | s_3, \pi(s_3)) & P(s_3 | s_3, \pi(s_3))
\end{pmatrix} \]

\[V^\pi = \gamma P^\pi V^\pi + R^\pi \]

Generalization of the game show example from earlier

How to solve this system efficiently? Does it even have a solution?

Solving for Values

\[V^\pi = \gamma P^\pi V^\pi + R^\pi \]

For moderate numbers of states we can solve this system exactly:

\[V^\pi = (I - \gamma P^\pi)^{-1} R^\pi \]

Guaranteed invertible because \(\gamma P^\pi \) has spectral radius <1
Iteratively Solving for Values

\[V^\pi = \gamma P^\pi V^\pi + R^\pi \]

For larger numbers of states we can solve this system indirectly:

\[V^{\pi}_{i+1} = \gamma P^\pi V^\pi_i + R^\pi \]

Guaranteed convergent because \(\gamma P^\pi \) has spectral radius <1

Converges to \(V^\pi \), which we call a fixed point because updates don't change the value any more

Interpreting the Iterations

• Suppose \(V^{\pi}_0 = 0 \), and \(R \) is defined on \((s,a)\)
• Then \(V^{\pi}_1 = R^\pi \) (value of executing 1 step of \(\pi \))
• \(V^{\pi}_2 = R^\pi + \gamma P^\pi V^{\pi}_1 = R^\pi + \gamma P^\pi R^\pi \)
 (expected value of executing 2 steps of \(\pi \))
• \(V^{\pi}_3 = R^\pi + \gamma P^\pi V^{\pi}_2 = R^\pi + \gamma P^\pi R^\pi + \gamma^2 (P^\pi)^2 R^\pi \)
 (expected value of executing 2 steps of \(\pi \))
• Can interpret these as the value of a finite horizon problem, where everything stops after \(i \) steps
Interpretation Continued

• $V_{\infty}^{\pi} = (I - \gamma P^{\pi})^{-1} R = V^{\pi}$ = infinite horizon values
• Infinite horizon = value of running π forever

• Nota bene: This interpretation applies when $V_{0}^{\pi} = 0$, but iteration converges to V^{π} for any choice of V_{0}^{π}

Establishing Convergence

• Eigenvalue analysis

• Monotonicity
 – Assume all values start pessimistic
 – One value must always increase
 – Can never overestimate
 – Easy to prove

• Contraction analysis...
 (slides included but not discussed in interest of time)
Contraction Analysis

• Define maximum norm

\[\|V\|_\infty = \max_i |V[i]| \]

• Consider two value functions \(V^a\) and \(V^b\) each at iteration 1:

\[\|V^a_1 - V^b_1\|_\infty = \varepsilon \]

• WLOG say

\[V^a_1 \leq V^b_1 + \varepsilon \] (Vector of all \(\varepsilon\)'s)

Contraction Analysis Contd.

• At next iteration for \(V^b\):

\[V^b_2 = R + \gamma PV^b_1 \]

• For \(V^a\)

\[V^a_2 = R + \gamma P(V^a_1) \leq R + \gamma P(V^b_1 + \bar{\varepsilon}) = R + \gamma PV^b_1 + \gamma \bar{\varepsilon} = R + \gamma PV^b_1 + \gamma \bar{\varepsilon} \]

• Conclude:

\[\|V^a_2 - V^b_2\|_\infty \leq \gamma \varepsilon \]
Importance of Contraction

- Any two value functions get closer
- True value function V^* is a fixed point (value doesn’t change with iteration)
- Max norm distance from V^* decreases \textit{dramatically} quickly with iterations

$$
\left\| V_0 - V^* \right\|_\infty = \varepsilon \rightarrow \left\| V_n - V^* \right\|_\infty \leq \gamma^n \varepsilon
$$

Finding Good Policies

Suppose an expert told you the “true value” of each state:

- $V(S1) = 10$
- $V(S2) = 5$

\begin{tabular}{c|c|c|c}
 & S1 & S2 & \\
\hline
Action 1 & 0.5 & 0.5 & \\
Action 2 & 0.7 & 0.3 & \\
\end{tabular}
Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

\[V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s') \]

 Decision theoretic optimal choice given \(V^* \)
 If we know \(V^* \), picking the optimal action is easy
 If we know the optimal actions, computing \(V^* \) is easy
 How do we compute both at the same time?

Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

\[V_{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V_i(s') \]

- Called value iteration or simply successive approximation
- Same as value determination, but we can change actions

- Convergence:
 - Can’t do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (fun exercise)
 - Converges quickly
The robot (shown ▲) lives in a world described by a 4x3 grid of squares with square (2,2) occupied by an obstacle.

A state is defined by the square in which the robot is located: (1,1) in the above figure → 11 states

In each state, the robot’s possible actions are {U, D, R, L}.

For each action:
- With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square).
- With probability 0.1 it moves in a direction perpendicular to the intended one.
- If the robot can’t move, it stays in the same square.

[This model satisfies the Markov condition]
Action (Transition) Model

- In each state, the robot’s possible actions are \{U, D, R, L\}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can’t move, it stays in the same square
[This model satisfies the Markov condition]

L brings the robot to:
- \((1, 1)\) with probability \(0.8 + 0.1 = 0.9\)
- \((1, 2)\) with probability 0.1

Terminal States, Rewards, and Costs

- Two terminal states: \((4, 2)\) and \((4, 3)\)
- Rewards:
 - \(R(4, 3) = +1\) [The robot finds gold]
 - \(R(4, 2) = -1\) [The robot gets trapped in quicksand]
 - \(R(s) = -0.04\) in all other states
- This example (from the Russell & Norvig text) assumes no discounting \((\gamma = 1)\)
- Discussion: Is this a good modeling decision?

“terminal” states
Not part of formal MDP specification.
Usually handled by forcing state to have a fixed value, e.g. +1
A stationary policy is a complete map $\pi : \text{state} \rightarrow \text{action}$.
For each non-terminal state it recommends an action, independent of when and how the state is reached.
Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy.
(The best action in a state does not depend on the past.)

The optimal policy tries to avoid “dangerous” state (3,2).
Optimal Policies for Various R(s)

- **R(s) = -0.04**
 - The policy moves to the right.
 - The utility at the current state is -0.04.

- **R(s) = -2**
 - The policy moves to the right.
 - The utility at the current state is -2.

- **R(s) = -0.01**
 - The policy moves to the right.
 - The utility at the current state is -0.01.

- **R(s) > 0**
 - The policy moves to the right.
 - The utility at the current state is positive.

Bellman Equation

The utility of a state depends on the utility of other states \(s'\) (possibly, including \(s\)), and vice versa.

- If \(s\) is terminal:
 \[V(s) = R(s) \]

- If \(s\) is non-terminal:
 \[V(s) = R(s) + \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a) V(s') \]

The Bellman equation is given by:

\[V(s) = R(s) + \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a) V(s') \]

- \(\pi^*(s) = \arg \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a) V(s') \)
Value Iteration Applied

1. Initialize the utility of each non-terminal states to $V_0(s) = 0$
2. For $t = 0, 1, 2, \ldots$ do
 $$V_{t+1}(s) = R(s) + \max_{a \in \text{Agent}(s)} \sum_{s' \in \text{Success}(s, a)} P(s'|s, a)V_t(s')$$
 for each non-terminal state s

State Utilities/Values

- The utility of a state s is the maximal expected amount of reward that the robot will collect from s and future states by executing some action in each encountered state, until it reaches a terminal state (infinite horizon)
- Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached
 [It only depends on the possible sequences of states after s, not on the possible sequences before s]
Properties of Value Iteration

- VI converges to V^* ($\| \cdot \|_\infty$ from V^* shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V^*, optimal policy is argmax)
- Optimal policy is stationary (i.e. Markovian – depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)
Policy Iteration

Greedy Policy Construction

Let’s name the action that looks best WRT V:

$$\pi_v(s) = \arg \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s')$$

Expectation over next-state values

$$\pi_v = \text{greedy}(V)$$
Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$

$V_\pi = \text{value of acting on } \pi$

(solve linear system)

$\pi_v \leftarrow \text{greedy}(V_\pi)$

Guaranteed to find optimal policy

Usually takes very small number of iterations

Computing the value functions is the expensive part

Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy *may* change before exact value of policy is computed
 - Many relatively cheap iterations

- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy *exactly*
 - Fewer, slower iterations (need to invert matrix)

- **Convergence**
 - Both are contractions in max norm
 - PI is *shockingly* fast (small number of iterations) in practice
Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 (we didn’t prove this for PI in class)

- VI costs less per iteration

- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Recent results indicate $\sim O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~ 50 years after the algorithm was introduced

A Unified View of
Value Iteration and Policy Iteration
Notation

• Update for for a fixed policy – definition of T^π operator (matrix-vector form):
 $T^\pi V \equiv R^\pi + \gamma P^\pi V$

• Update with policy improvement – definition of the T operator:
 $TV(s) = \max_a r(s, a) + \gamma \sum_{s'} P(s'|s, a)V(s')$

Value Determination

• For 0 steps \[V_0 = R^\pi \]

• For i steps \[V_i = T^\pi V_{i-1} = (T^\pi)^i R^\pi \]

• Infinite horizon \[\lim_{i \to \infty} V_i = (T^\pi)^\infty R^\pi = (1 - \gamma P^\pi)^{-1} R^\pi = V^\pi \]
Value Iteration

- For 0 steps \(V_0 = R \)
 (If \(R \) depends on \(a \), pick \(a \) with the highest immediate reward)

- For \(i \) steps \(V_i = TV_{i-1} = T^i R \)

- Infinite horizon \(\lim_{i \to \infty} V_i = T^\infty R = TV^* = V^* \)

Modified Policy Iteration

- Guess \(V_0 \) (usually just \(R \)), and \(\pi \)
- \(i=1 \)
- Repeat until convergence*
 - For \(j=1 \) to \(n \)
 - \(V_i = T^n V_{i-1} \)
 - \(i = i+1 \)
 - \(\pi = \text{greedy}(V_{i-1}) \)

- Special cases: \(n=1 \) (VI), \(n \to \infty \) (PI)
MDP Limitations → Reinforcement Learning

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known

- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies