
1

Machine Learning Intro

CompSci 370
Ronald Parr

Department of Computer Science
Duke University

Why Study Learning?

• Considered a hallmark of intelligence

• Viewed as way to reduce programming burden
– Not enough programmers in the world to produce custom solutions to

all problems – even if we knew how
– Programmers are expensive!

• Many algorithms assume parameters that are difficult to
determine exactly a priori
– What is the right formula to filter spam?
– When should your smart thermostat turn on the heat?

2

Examples
• SPAM classification
• Computational Biology/medicine

– Distinguish healthy/diseased tissue (e.g., skin/colon cancer)
– Find structure in biological data (regulatory pathways)

• Financial events
– Predict good/bad credit risks
– Predict price changes
– Response to marketing

• Object/person recognition
• Natural language processing
• Document categorization and user preferences
• Recommend products to users
• Learn to play games, e.g., go, chess, etc.
• Learn to control systems, e.g., robots or helicopters
• Public database of (old) benchmark learning problems:

– http://www.ics.uci.edu/~mlearn/MLSummary.html

Who Hires in Machine Learning?

• Universities
• Apple, Microsoft, Google, Amazon, Facebook, etc.
• Defense contractors and car companies
• Some financial institutions (quietly)
• Many startups

• ML viewed as good background for many other
tasks (robotics, vision, systems, engineering)

3

What is Machine Learning?

• Learning Element
– The thing that learns

• Performance Element
– Objective measure of progress

• Learning is simply an increase in the ability of the
learning element over time (with data) to achieve
the task specified by the performance element

ML vs. Statistics?

• Machine learning is:
– Younger
– More empirical
– More algorithmic
– (arguably) More practical
– (arguably) More decision theoretic

• Statistics is:
– More mature
– (arguably) More formal and rigorous

Look at this cool result!
Maybe somebody can explain
why it works later?

Let’s model this situation and
prove that we converge to a
consistent answer!

4

ML vs. Data Mining

• Machine Learning is:
– (Arguably) more formal
– (Arguably) more task driven/decision theoretic

• Data Mining is:
– More constrained by size of data set
– More closely tied to database techniques

Feedback in Learning

• Supervised Learning
– Given examples of correct behavior
– Example input: Labeled x-rays
– Example use: Cancer diagnosis

• Unsupervised Learning
– No external notion of what is correct
– Example: Unlabeled x-rays
– Example use: Clustering based on appearance

• Reinforcement Learning
– Indirect indication of effectiveness
– Example use: PacMan, go, chess

Recognizing
handwritten digits

5

Supervised Learning Methodology

• Distinction between training and testing is crucial

• Correct performance on training set is just
memorization!

• Researcher should never look at the test data
(but in practice always does)

• Raises issues for “benchmark” learning problems

Types of Supervised Learning

• Training input:
– Feature vector for each datum: x1…xn

– Target value: y

• Classification – assigning labels/classes
• Regression – assigning real numbers

6

Features and Targets
• Features can be anything

– Images, sounds, text
– Real values (height, weight)
– Integers, or binaries

• Targets can be discrete classes:
– Safe mushrooms vs. poisonous
– Malignant vs. benign
– Good credit risk vs. bad
– Label of image

• Or numbers
– Selling price of house
– Life expectancy

How Most Supervised Learning
Algorithms Work

• Main idea: Minimize error on training set
• How this is done depends on:

– Hypothesis space
– Type of data

• Big Question: What is the “right” hypothesis space?

• The following example for regression (continuous
targets) is from Chris Bishop

7

What is the Best Choice of
Polynomial?

Noisy Source Data

Degree 0 Fit

8

Degree 1 Fit

Degree 3 Fit

9

Degree 9 Fit

Observations

• Degree 3 is the best match to the source
• Degree 9 is the best match to the samples
• We call this over-fitting
• Performance on test data:

10

What went wrong?

• Is the problem a bad choice of polynomial?
• Is the problem that we don’t have enough data?
• Answer: Yes

How to pick our hypothesis space?
• Learning theory (a rich subarea) gives some guidance on

this, though it is often more abstract than directly
applicable to real world applications

• Practical approaches:
– Regularizer or prior to trade off training set error vs.

hypothesis space complexity
– Cross validation uses one or more mini test sets to help inform

hypothesis space selection

• Is this still relevant with deep learning? Yes, but
sometimes different tricks are used – next lecture

11

Reminder: Classification vs. Regression

• Regression tries to hit the target values
with the function we are fitting

• Classification tries to find a function that
separates the classes

Decision Boundaries
• A classifier can be viewed as partitioning the input space or feature

space X into decision regions

1

1

1
1

1

0

0 0
0

0

0

0

x1

x2

• A linear threshold unit always produces a linear decision boundary. A
set of points that can be separated by a linear decision boundary is
linearly separable.

12

What can be expressed?
• Examples of things that can be expressed

(Assume n Boolean (0/1 features)
– Conjunctions:

• x1^x3^x4 : 1×x1 + 0×x2 +1×x3 + 1×x4 ³ 3
• x1^¬x3^x4: 1×x1 + 0×x2 +-1×x3 + 1×x4 ³ 2

– at-least-m-of-n
• at-least-2-of(x1,x2,x4)
• 1×x1 + 1×x2 + 0×x3 + 1×x4 ³ 2

• Examples of things that cannot be expressed:
– Non-trivial disjunctions:

• (x1^x3) + (x3^x4)
– Exclusive-Or

• (x1^¬x2) + (¬x1^x2)

Limitations of Linearly Separable Functions

Is red linearly separable from green?
Are the circles linearly separable from the squares?

13

Feature Engineering

• All data are represented in “feature space”- the space
spanned by all possible values of all features

• Feature space is largely a choice, like the degree of your
polynomial, i.e., feature space engineering = hypothesis
space engineering

• If you don’t like your performance, you can change
your feature space – but don’t forget peril of overfitting

Suppose we’re in 1-dimension

Easy to find a
linear separator

x=0

Copyright © 2001, 2003, Andrew W. Moore

14

Harder 1-dimensional dataset

What can be done
about this?

x=0

Copyright © 2001, 2003, Andrew W. Moore

Harder 1-dimensional dataset

Remember how permitting
non-linear features (higher
degree polynomials) made
linear regression so much
more powerful?

Let’s permit them here too

x=0

Copyright © 2001, 2003, Andrew W. Moore

15

Harder 1-dimensional dataset

Now linearly separable in
the new feature space

But, what if the right
feature set isn’t obvious

x=0

Copyright © 2001, 2003, Andrew W. Moore

Motivation for non-linear Classifiers

• Linear methods are “weak”
– Make strong assumptions
– Can only express relatively simple functions of inputs

• Coming up with good features can be hard
– Requires human input
– Knowledge of the domain

• Role of neural networks
– Neural networks started as linear models of single neurons
– Combining ultimately led to non-linear functions that don’t

always need careful feature engineering

16

Neural Network Motivation

• Human brains are only known example of actual intelligence
• Individual neurons are slow, boring
• Brains succeed by using massive parallelism
• Idea: Copy what works

• Raises many issues:
– Is the computational metaphor suited to the computational hardware?
– How do we know if we are copying the important part?
– Are we aiming too low?

Why Neural Networks?
Maybe computers should be more brain-like:

Computers Brains

Computational Units 1010
transistors/CPU

1011
neurons/brain

Storage Units 1011 bits RAM
1013 bits HD

1011 neurons
1014 synapses

Cycle Time 10-9 S 10-3 S

Bandwidth 1010 bits/s* 1014 bits/s

Compute Power 1010 Ops/s 1014 Ops/s

17

Comments on Summit
(world’s fastest supercomputer as of 10/19)

• 149 Petaflops

• ~1018 Ops/s (Summit) vs. 1014 Ops/s (brain)

• 2.4M cores (conflicting reports)

• 2.8 PB RAM (1017 bits)

• 10 Megawatts power(~$10M/year in electricity [my estimate])

• ~$200M cost
Note: recently surpassed by Fugaku – 3x more cores, 3x more energy, 3x performance, 5x cost
Fugaku expected to replaced by Frontier this year, 2x Fugaku performance, same energy, 60% cost

More Comments on Summit

• What is wrong with this picture?
– Weight
– Size
– Power Consumption

• What is missing?
– Still can’t replicate human abilities

(though vastly exceeds human abilities in many areas)
– Are we running the wrong programs?
– Is the architecture well suited to the programs we

might need to run?

18

Artificial Neural Networks

• Develop abstraction of function of actual neurons

• Simulate large, massively parallel artificial neural networks on
conventional computers – note that even supercomputers have
very low connectivity compared to a brain

• Some have tried to build the hardware too

• Try to approximate human learning, robustness to noise,
robustness to damage, etc.

Neural Network Lore

• Neural nets have been adopted with an almost religious fervor
within the AI community – several times
– First coming: Perceptron
– Second coming: Multilayer networks
– Third coming (present): Deep networks

• Sound science behind neural networks: gradient descent
• Unsound social phenomenon behind neural networks: HYPE!

19

Artificial Neurons

node/
neuron

xj wj,i zi

!!

€

ai = h(w j,ix j
j
∑)

h can be any function, but usually a smoothed step function

h

Threshold Functions

-1.5

-1

-0.5

0

0.5

1

1.5

-10 -5 0 5 10

-1

-0.5

0

0.5

1

-10 -5 0 5 10

h(x)=tanh(x) or 1/(1+exp(-x))
(logistic sigmoid)

h(x)=sgn(x)
(perceptron)

20

Feedforward Networks

• We consider acyclic networks
• One or more computational layers
• Entire network can be viewed as computing a

complicated non-linear function
• Typical uses in learning:

– Classification (usually involving complex patterns)
– General continuous function approximation

• Many other variations possible

Special Case: Perceptron

node/
neuron

xj wj

Y

h

h is a simple step function (sgn)

21

Perceptron is a Linear Classifier

56

S hxi

x1

xn

ywi

+ +

+

++ -

-

-
-

-
x1

x2

w1 x1 + w2 x2 = 0

h(u)

u

Good News/Bad News

• Good news
– Perceptron learning rule can learn to distinguish

any two classes that are linearly separable
– If classes are separable, perceptron learning rule

will converge for any learning rate

• Bad news
– Linear separability is a strong assumption
– Failure to appreciate this led to excessive

optimism and first neural network crash

22

Multilayer Networks

• Once people realized how simple perceptrons were, they lost
interest in neural networks for a while

• Multilayer networks turn out to be much more expressive
(with a smoothed step function)
– Use sigmoid, e.g., h=tanh(wTx) or logistic sigmoid
– With 2 layers, can represent any continuous function
– With 3 layers, can represent many discontinuous functions

• Tricky part: How to adjust the weights

Play with it at: http://playground.tensorflow.org

Smoothing Things Out
• Idea: Do gradient descent on a smooth error function
• Error function is sum of squared errors
• Consider a single training example first

!!!!

€

E = 0.5error(X (i),w)2

∂E
∂wij

=
∂E
∂a j

∂a j

∂wij

∂E
∂a j

= δ j

∂a j

∂wij

= zi

∂E
∂wij

= δ jzi

i
j

wij

ai
!!

€

a j = wijzi
i
∑

zi zj

!!

€

z j = h(a j)
Notation

Calculus

23

Calculus Reminder

• Chain rule for one variable:

• Chain rule for:

• For k=1, m=1

∂f g
∂x

=
∂f
∂g

∂g
∂x

f :ℜn →ℜk ,g :ℜm →ℜn

Jx (f !g)= Jg(x)(f)Jx (g)= k×n() n×m()

Jx (f g)=
∂f

∂g(x)ii=1

n

∑
∂g(x)i
∂x

Propagating Errors

• For output units (assuming no weights on outputs)

• For hidden units
!!

€

∂E
∂a j

= δ j = y − t

k
k

iki
i

i
ik

k ki

k

k k
i

i

wah
a
hw

a
E

a
a

a
E

a
E dd ååå =

¶
¶

¶
¶

=
¶
¶

¶
¶

==
¶
¶)('

i
jwijai

!!

€

a j = wijzi
i
∑

zj=output

!!

€

z j = f (a j)

All upstream nodes from i

Chain rule

∂E
∂wij

=
∂E
∂aj

∂aj

∂wij

=δ jzi

∂E
∂aj

=δ j ,"""
∂aj

∂wij

= zi ,""""

Error gradient of upstream nodes

24

Differentiating h

• Recall the logistic sigmoid:

• Differentiating:

!!!!!!

€

h(x) =
ex

1+ ex =
1

1+ e−x

!!!!!!

€

1 − h(x) =
e−x

1+ e−x
=

1
1+ ex

!!!!

€

h'(x) =
e−x

(1+ e−x)2
=

1
(1+ e−x)

e−x

(1+ e−x)
= h(x)(1 − h(x))

Putting it together

• Apply input x to network (sum for multiple inputs)
– Compute all activation levels
– Compute final output (forward pass)

• Compute d for output units

• Backpropagate ds to hidden units

• Compute gradient update:

!!

€

δ = y − t

!!

€

δ j =
∂E
∂akk

∑ ∂ak

∂a j

= h'(a j) wkj
k
∑ δk

!!

€

∂E
∂wij

= δ jai

25

Summary of Gradient Update
• Gradient calculation, parameter updates have

recursive formulation
• Decomposes into:

– Local message passing
– No transcendentals:

• h’(x)=1-h(x)2 for tanh(x)
• H’(x)=h(x)(1-h(x)) for logistic sigmoid

• Highly parallelizable
• Biologically plausible(?)

• Celebrated backpropagation algorithm

26

Inputs

Propagate forward, computing activation levels,
outputs to next layer

27

Compute the output of the final layer

Compute the error (d) for the final layer

28

!!

€

∂E
∂wij

= δ jai
Compute the error d’s and gradient updates for earlier layers:

Complete training for one datum – now repeat for entire training set

29

Good News

• Can represent any continuous function with two
layers (1 hidden)

• Can represent essentially any function with 3 layers
• (But how many hidden nodes?)

• Multilayer nets are a universal approximation
architecture with a highly parallelizable training
algorithm

Early Successes of Multilayer Nets

• Trained to pronounce English
– Training set: Sliding window over text, sounds
– 95% accuracy on training set
– 78% accuracy on test set

• Trained to recognize handwritten digits
– >99% accuracy

• Trained to drive (Pomerleau et al. no-hands across America 1995)

https://www.cs.cmu.edu/~tjochem/nhaa/navlab5_details.html

30

Backprop Issues

• Backprop = gradient descent on an error function
• Function is nonlinear (= powerful)
• Function is nonlinear (= local minima)
• Big nets:

– Many parameters
• Many optima
• Slow gradient descent
• Risk of overfitting

– Biological plausibility ¹ Electronic plausibility
• Many NN experts became experts in numerical

analysis (by necessity)

NN History Through the Second Coming

• Second wave of interest in neural networks lost
research momentum in the 1990s – though still
continued to enjoy many practical applications

• Neural network tricks were not sufficient to
overcome competing methods:
– Support vector machines
– Clever feature selection methods wrapped around

simple or linear methods

• 2000-2010 was an era of linear + special sauce
• What changed?

31

Deep Networks

• Not a learning algorithm, but a family of techniques
– Improved training techniques (though still essentially gradient descent)
– Clever crafting of network structure – convolutional nets
– Some new activation functions

• Exploit massive computational power
– Parallel computing
– GPU computing
– Very large data sets (can reduce overfitting)

Deep Networks Today

• Still on the upward swing of the hype pendulum
• State of the art performance for many tasks:

– Speech recognition
– Object recognition
– Playing video games

• Controversial but increasingly accepted in practice:
– Hype, hype, hype! (but it really does work well in many cases!)
– Theory lags practice
– Collection of tricks, not an entirely a science yet
– Results are not human-interpretable

32

Conclusions

• Supervised learning = successful way to take training (input,
output pairs) and induce functions that generalize to test
data drawn from the same distribution as the training data.

• Methods for learning linear functions are well understood
and perform well with good features

• Non-linear methods, such as neural networks are more
powerful and require less feature engineering but are more
computationally expensive and less predictable in practice
– Historically wild swings in popularity
– Currently on upswing due to clever changes in training methods,

use of parallel computation, and large data sets

