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Why Study Learning?

• Considered a hallmark of intelligence

• Viewed as way to reduce programming burden
– Not enough programmers in the world to produce custom solutions to 

all problems – even if we knew how
– Programmers are expensive!

• Many algorithms assume parameters that are difficult to 
determine exactly a priori
– What is the right formula to filter spam?
– When should your smart thermostat turn on the heat?



2

Examples
• SPAM classification
• Computational Biology/medicine

– Distinguish healthy/diseased tissue (e.g., skin/colon cancer)
– Find structure in biological data (regulatory pathways)

• Financial events
– Predict good/bad credit risks
– Predict price changes
– Response to marketing

• Object/person recognition
• Natural language processing
• Document categorization and user preferences
• Recommend products to users
• Learn to play games, e.g., go, chess, etc.
• Learn to control systems, e.g., robots or helicopters
• Public database of (old) benchmark learning problems:

– http://www.ics.uci.edu/~mlearn/MLSummary.html

Who Hires in Machine Learning?

• Universities
• Apple, Microsoft, Google, Amazon, Facebook, etc.
• Defense contractors and car companies
• Some financial institutions (quietly)
• Many startups

• ML viewed as good background for many other 
tasks (robotics, vision, systems, engineering)
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What is Machine Learning?

• Learning Element
– The thing that learns

• Performance Element
– Objective measure of progress

• Learning is simply an increase in the ability of the 
learning element over time (with data) to achieve 
the task specified by the performance element

ML vs. Statistics?

• Machine learning is:
– Younger
– More empirical
– More algorithmic
– (arguably) More practical
– (arguably) More decision theoretic

• Statistics is:
– More mature
– (arguably) More formal and rigorous

Look at this cool result!
Maybe somebody can explain 
why it works later?

Let’s model this situation and 
prove that we converge to a 
consistent answer!
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ML vs. Data Mining

• Machine Learning is:
– (Arguably) more formal
– (Arguably) more task driven/decision theoretic

• Data Mining is:
– More constrained by size of data set
– More closely tied to database techniques

Feedback in Learning

• Supervised Learning
– Given examples of correct behavior
– Example input:  Labeled x-rays
– Example use:  Cancer diagnosis

• Unsupervised Learning
– No external notion of what is correct
– Example:  Unlabeled x-rays
– Example use:  Clustering based on appearance

• Reinforcement Learning
– Indirect indication of effectiveness
– Example use:  PacMan, go, chess

Recognizing
handwritten digits
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Supervised Learning Methodology

• Distinction between training and testing is crucial

• Correct performance on training set is just 
memorization!

• Researcher should never look at the test data 
(but in practice always does)

• Raises issues for “benchmark” learning problems

Types of Supervised Learning

• Training input:
– Feature vector for each datum: x1…xn

– Target value: y

• Classification – assigning labels/classes
• Regression – assigning real numbers
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Features and Targets
• Features can be anything

– Images, sounds, text
– Real values (height, weight)
– Integers, or binaries

• Targets can be discrete classes:
– Safe mushrooms vs. poisonous
– Malignant vs. benign
– Good credit risk vs. bad
– Label of image

• Or numbers
– Selling price of house
– Life expectancy

How Most Supervised Learning 
Algorithms Work

• Main idea: Minimize error on training set
• How this is done depends on:

– Hypothesis space
– Type of data

• Big Question: What is the “right” hypothesis space?

• The following example for regression (continuous 
targets) is from Chris Bishop
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What is the Best Choice of 
Polynomial?

Noisy Source Data

Degree 0 Fit
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Degree 1 Fit

Degree 3 Fit
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Degree 9 Fit

Observations

• Degree 3 is the best match to the source
• Degree 9 is the best match to the samples
• We call this over-fitting
• Performance on test data:
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What went wrong?

• Is the problem a bad choice of polynomial?
• Is the problem that we don’t have enough data?
• Answer:  Yes 

How to pick our hypothesis space?
• Learning theory (a rich subarea) gives some guidance on 

this, though it is often more abstract than directly 
applicable to real world applications

• Practical approaches:
– Regularizer or prior to trade off training set error vs. 

hypothesis space complexity
– Cross validation uses one or more mini test sets to help inform 

hypothesis space selection

• Is this still relevant with deep learning? Yes, but 
sometimes different tricks are used – next lecture
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Reminder: Classification vs. Regression

• Regression tries to hit the target values 
with the function we are fitting

• Classification tries to find a function that 
separates the classes

Decision Boundaries
• A classifier can be viewed as partitioning the input space or feature 

space X into decision regions
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• A linear threshold unit always produces a linear decision boundary.  A 
set of points that can be separated by a linear decision boundary is
linearly separable. 
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What can be expressed?
• Examples of things that can be expressed

(Assume n Boolean (0/1 features)
– Conjunctions: 

• x1^x3^x4 :   1×x1 + 0×x2 +1×x3  + 1×x4 ³ 3
• x1^¬x3^x4:  1×x1 + 0×x2 +-1×x3  + 1×x4 ³ 2

– at-least-m-of-n
• at-least-2-of(x1,x2,x4)
• 1×x1 + 1×x2 + 0×x3  + 1×x4 ³ 2

• Examples of things that cannot be expressed:
– Non-trivial disjunctions:

• (x1^x3) + (x3^x4)
– Exclusive-Or

• (x1^¬x2) + (¬x1^x2)

Limitations of Linearly Separable Functions

Is red linearly separable from green?
Are the circles linearly separable from the squares?
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Feature Engineering

• All data are represented in “feature space”- the space 
spanned by all possible values of all features

• Feature space is largely a choice, like the degree of your 
polynomial, i.e., feature space engineering = hypothesis 
space engineering

• If you don’t like your performance, you can change 
your feature space – but don’t forget peril of overfitting

Suppose we’re in 1-dimension

Easy to find a 
linear separator

x=0

Copyright © 2001, 2003, Andrew W. Moore
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Harder 1-dimensional dataset

What can be done 
about this?

x=0

Copyright © 2001, 2003, Andrew W. Moore

Harder 1-dimensional dataset

Remember how permitting 
non-linear features (higher 
degree polynomials) made 
linear regression so much 
more powerful?

Let’s permit them here too

x=0

Copyright © 2001, 2003, Andrew W. Moore
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Harder 1-dimensional dataset

Now linearly separable in 
the new feature space

But, what if the right 
feature set isn’t obvious

x=0

Copyright © 2001, 2003, Andrew W. Moore

Motivation for non-linear Classifiers

• Linear methods are “weak”
– Make strong assumptions
– Can only express relatively simple functions of inputs

• Coming up with good features can be hard
– Requires human input
– Knowledge of the domain

• Role of neural networks
– Neural networks started as linear models of single neurons
– Combining ultimately led to non-linear functions that don’t 

always need careful feature engineering
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Neural Network Motivation

• Human brains are only known example of actual intelligence
• Individual neurons are slow, boring
• Brains succeed by using massive parallelism
• Idea:  Copy what works

• Raises many issues:
– Is the computational metaphor suited to the computational hardware?
– How do we know if we are copying the important part?
– Are we aiming too low?

Why Neural Networks?
Maybe computers should be more brain-like:

Computers Brains

Computational Units 1010
transistors/CPU

1011
neurons/brain

Storage Units 1011 bits RAM
1013 bits HD

1011 neurons
1014 synapses

Cycle Time 10-9 S 10-3 S

Bandwidth 1010 bits/s* 1014 bits/s

Compute Power 1010 Ops/s 1014 Ops/s
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Comments on Summit
(world’s fastest supercomputer as of 10/19)

• 149 Petaflops

• ~1018 Ops/s (Summit) vs.  1014 Ops/s (brain)

• 2.4M cores (conflicting reports)

• 2.8 PB RAM (1017 bits)

• 10 Megawatts power(~$10M/year in electricity [my estimate])

• ~$200M cost
Note: recently surpassed by Fugaku – 3x more cores, 3x more energy, 3x performance, 5x cost
Fugaku expected to replaced by Frontier this year, 2x Fugaku performance, same energy, 60% cost

More Comments on Summit

• What is wrong with this picture?
– Weight
– Size
– Power Consumption

• What is missing?
– Still can’t replicate human abilities 

(though vastly exceeds human abilities in many areas)
– Are we running the wrong programs?
– Is the architecture well suited to the programs we 

might need to run?
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Artificial Neural Networks

• Develop abstraction of function of actual neurons

• Simulate large, massively parallel artificial neural networks on 
conventional computers – note that even supercomputers have 
very low connectivity compared to a brain

• Some have tried to build the hardware too

• Try to approximate human learning, robustness to noise, 
robustness to damage, etc.

Neural Network Lore

• Neural nets have been adopted with an almost religious fervor 
within the AI community – several times
– First coming: Perceptron
– Second coming: Multilayer networks
– Third coming (present): Deep networks

• Sound science behind neural networks: gradient descent
• Unsound social phenomenon behind neural networks: HYPE!
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Artificial Neurons

node/
neuron
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h(x)=tanh(x) or 1/(1+exp(-x))
(logistic sigmoid)

h(x)=sgn(x)
(perceptron)
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Feedforward Networks

• We consider acyclic networks
• One or more computational layers
• Entire network can be viewed as computing a 

complicated non-linear function
• Typical uses in learning:

– Classification (usually involving complex patterns)
– General continuous function approximation

• Many other variations possible

Special Case: Perceptron

node/
neuron

xj wj

Y

h

h is a simple step function (sgn)
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Perceptron is a Linear Classifier
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Good News/Bad News

• Good news
– Perceptron learning rule can learn to distinguish 

any two classes that are linearly separable
– If classes are separable, perceptron learning rule 

will converge for any learning rate

• Bad news
– Linear separability is a strong assumption
– Failure to appreciate this led to excessive 

optimism and first neural network crash
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Multilayer Networks

• Once people realized how simple perceptrons were, they lost 
interest in neural networks for a while

• Multilayer networks turn out to be much more expressive
(with a smoothed step function)
– Use sigmoid, e.g., h=tanh(wTx) or logistic sigmoid
– With 2 layers, can represent any continuous function
– With 3 layers, can represent many discontinuous functions

• Tricky part:  How to adjust the weights

Play with it at: http://playground.tensorflow.org

Smoothing Things Out
• Idea:  Do gradient descent on a smooth error function
• Error function is sum of squared errors
• Consider a single training example first
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Calculus Reminder

• Chain rule for one variable:

• Chain rule for:  

• For k=1, m=1

∂f g
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Propagating Errors

• For output units (assuming no weights on outputs)

• For hidden units
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Differentiating h

• Recall the logistic sigmoid:

• Differentiating:

!!!!!!
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Putting it together

• Apply input x to network (sum for multiple inputs)
– Compute all activation levels
– Compute final output (forward pass)

• Compute d for output units

• Backpropagate ds to hidden units

• Compute gradient update:
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Summary of Gradient Update
• Gradient calculation, parameter updates have 

recursive formulation
• Decomposes into:

– Local message passing
– No transcendentals:

• h’(x)=1-h(x)2 for tanh(x)
• H’(x)=h(x)(1-h(x)) for logistic sigmoid

• Highly parallelizable
• Biologically plausible(?)

• Celebrated backpropagation algorithm
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Inputs

Propagate forward, computing activation levels,
outputs to next layer
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Compute the output of the final layer

Compute the error (d) for the final layer



28

!!

€ 

∂E
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Compute the error d’s and gradient updates for earlier layers:

Complete training for one datum – now repeat for entire training set
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Good News

• Can represent any continuous function with two 
layers (1 hidden)

• Can represent essentially any function with 3 layers
• (But how many hidden nodes?)

• Multilayer nets are a universal approximation 
architecture with a highly parallelizable training 
algorithm

Early Successes of Multilayer Nets

• Trained to pronounce English
– Training set: Sliding window over text, sounds
– 95% accuracy on training set
– 78% accuracy on test set

• Trained to recognize handwritten digits
– >99% accuracy

• Trained to drive (Pomerleau et al. no-hands across America 1995)

https://www.cs.cmu.edu/~tjochem/nhaa/navlab5_details.html
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Backprop Issues

• Backprop = gradient descent on an error function
• Function is nonlinear (= powerful)
• Function is nonlinear (= local minima)
• Big nets:

– Many parameters
• Many optima
• Slow gradient descent
• Risk of overfitting

– Biological plausibility ¹ Electronic plausibility
• Many NN experts became experts in numerical 

analysis (by necessity)

NN History Through the Second Coming

• Second wave of interest in neural networks lost 
research momentum in the 1990s – though still 
continued to enjoy many practical applications

• Neural network tricks were not sufficient to 
overcome competing methods:
– Support vector machines
– Clever feature selection methods wrapped around 

simple or linear methods

• 2000-2010 was an era of linear + special sauce
• What changed?
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Deep Networks

• Not a learning algorithm, but a family of techniques
– Improved training techniques (though still essentially gradient descent)
– Clever crafting of network structure – convolutional nets
– Some new activation functions

• Exploit massive computational power
– Parallel computing
– GPU computing
– Very large data sets (can reduce overfitting)

Deep Networks Today

• Still on the upward swing of the hype pendulum
• State of the art performance for many tasks:

– Speech recognition
– Object recognition
– Playing video games

• Controversial but increasingly accepted in practice:
– Hype, hype, hype! (but it really does work well in many cases!)
– Theory lags practice
– Collection of tricks, not an entirely a science yet
– Results are not human-interpretable
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Conclusions

• Supervised learning = successful way to take training (input, 
output pairs) and induce functions that generalize to test 
data drawn from the same distribution as the training data.

• Methods for learning linear functions are well understood 
and perform well with good features

• Non-linear methods, such as neural networks are more 
powerful and require less feature engineering but are more 
computationally expensive and less predictable in practice
– Historically wild swings in popularity
– Currently on upswing due to clever changes in training methods, 

use of parallel computation, and large data sets


