CompSci 516
Database Systems

Lecture 22
Query Optimization

Instructor: Sudeepa Roy
Where are we now?

Relational model, queries, db design
- Relational Model
- Normal Forms, FD
- Query in SQL / RA / RC
- Recursion

DBMS Internals and Query Processing
- Storage
- Index
- Join algo/Sorting
- Execution/Optimization

Beyond Relational Model
- XML
- NOSQL
 - JSON/MongoDB

Transactions
- Basics
- Concurrency Control
- Recovery

(Basic) Big Data Processing
- Map-Reduce/Spark
- Parallel DBMS
- Distributed DBMS

Other Topics
- Data Mining
- Data Cube

Covered
- To be covered

Duke CS, Spring 2022
CompSci 516: Database Systems
Announcements (Tues, 03/29)

• HW3 due 4/5 (Tues) noon
 – Let us know if you need someone to work with
• More frequent check in for all teams by mentors
• Project report deadline 04/13
Reading Material

- [RG]
 - Query optimization: Chapter 15 (overview only)

- [GUW]
 - Chapter 16.2-16.7

- Original paper by Selinger et al. :
 - P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a Relational Database Management System
 Proceedings of ACM SIGMOD, 1979. Pages 22-34
 - No need to understand the whole paper, but take a look at the example (link on the course webpage)

Acknowledgement:
- The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.
- Some of the following slides have been created by adapting slides by Profs. Shivnath Babu and Magda Balazinska
Query Blocks: Units of Optimization

• Query Block
 – No nesting
 – One SELECT, one FROM
 – At most one WHERE, GROUP BY, HAVING

• SQL query
• => parsed into a collection of query blocks
• => the blocks are optimized one block at a time

• Express single-block it as a relational algebra (RA) expression

```sql
SELECT S.sname
FROM Sailors S
WHERE S.age IN
  (SELECT MAX (S2.age)
   FROM Sailors S2
   GROUP BY S2.rating)
```
Cost Estimation

• For each plan considered, must estimate cost:

• **Must estimate cost** of each operation in plan tree.
 – Depends on input cardinalities
 – We’ve discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)

• **Must also estimate size of result** for each operation in tree
 – gives input cardinality of next operators

• Also consider
 – whether the output is sorted
 – intermediate results written to disk
Relational Algebra Equivalences

- Allow us to choose different join orders and to `push’ selections and projections ahead of joins.

- **Selections:** $\sigma_{c_1 \land \ldots \land c_n}(R) \equiv \sigma_{c_1}(\ldots \sigma_{c_n}(R))$ (Cascade)
 $\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R))$ (Commute)

- **Projections:** $\pi_{a_1}(R) \equiv \pi_{a_1}(\ldots(\pi_{a_n}(R)))$ (Cascade)

- **Joins:** $R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$ (Associative)
 $\ (R \bowtie S) \equiv (S \bowtie R)$ (Commute)

There are many more intuitive equivalences, see 15.3.4 for details if interested
Notation

• $T(R)$: Number of tuples in R
• $B(R)$: Number of blocks (pages) in R
• $V(R, A)$: Number of distinct values of attribute A in R
Query Optimization Problem

Pick the best plan from the space of physical plans
Cost-based Query Optimization

Pick the plan with least cost

Challenge:

• Do not want to execute more than one plans

• Need to estimate the cost without executing the plan!

“heuristic-based” optimizer (e.g. push selections down) have limited power and not used much
Cost-based Query Optimization

Pick the plan with least cost

Tasks:
1. Estimate the cost of individual operators done
2. Estimate the size of output of individual operators today
3. Combine costs of different operators in a plan today
4. Efficiently search the space of plans today
Task 1 and 2
Estimating cost and size of different operators

- **Size** = #tuples, NOT #pages
- **Cost** = #page I/O
 - need to consider whether the intermediate relation fits in memory, is written back to/read from disk (or on-the-fly goes to the next operator), etc.
Desired Properties of Estimating Sizes of Intermediate Relations

Ideally,

• should give accurate estimates (as much as possible)
• should be easy to compute
• should be logically consistent
 – size estimate should be independent of how the relation is computed (e.g. which join algorithm/join order is used)

• But, no “universally agreed upon” ways to meet these goals
Cost of Table Scan

Cost: $B(R)$
Size: $T(R)$

$T(R)$: Number of tuples in R
$B(R)$: Number of blocks in R
Cost of Index Scan

Cost: \(B(R) \) – if clustered
 \(T(R) \) – if unclustered

Size: \(T(R) \)

\(T(R) \) : Number of tuples in R
\(B(R) \) : Number of blocks in R

Note:
1. size is independent of the implementation of the scan/index
2. Index scan is bad if unclustered
Cost of Index Scan with Selection

\[X = \sigma_{R.A > 50} R \]

Cost: \(B(R) \times f \) – if clustered

\[T(R) \times f \] – if unclustered

Size: \(T(R) \times f \)

Reduction factor

\[f = \frac{\text{Max}(R.A) - 50}{\text{Max}(R.A) - \text{Min}(R.A)} \]

assumes uniform distribution

\[T(R) : \text{Number of tuples in } R \]
\[B(R) : \text{Number of blocks in } R \]
Cost of Index Scan with Selection (and multiple conditions)

\[X = \sigma_{R.A > 50 \text{ and } R.B = C} R \]

Cost: \(B(R) \times f \) – if clustered
\(T(R) \times f \) – if unclustered

Size: \(T(R) \times f \)

Reduction factors

range selection
\[f_1 = \frac{\text{Max}(R.A) - 50}{\text{Max}(R.A) - \text{Min}(R.A)} \]

value selection
\[f_2 = \frac{1}{V(R, B)} \]

\[f = f_1 \times f_2 \] (assumes independence and uniform distribution)

What is \(f_1 \) if the first condition is \(100 > R.1 > 50 \)?

Assume index on \((A, B)\)

Value selection

\(T(R) \): Number of tuples in \(R \)
\(B(R) \): Number of blocks in \(R \)
\(V(R, A) \): Number of distinct values of attribute \(A \) in \(R \)
Cost of Projection

\[X = \pi_A R \]

Cost: depends on the method of scanning \(R \)
- \(B(R) \) for table scan or clustered index scan

Size: \(T(R) \)
- But tuples are smaller
- If you have more information on the size of the smaller tuples, can estimate \#I/O better
Size of Join

Quite tricky
- If disjoint A and B values
 - then 0
- If A is key of R and B is foreign key of S
 - then $T(S)$
- If all tuples have the same value of $R.A = S.B = x$
 - then $T(R) \times T(S)$

$R.A = S.B$

$T(R)$: Number of tuples in R
$B(R)$: Number of blocks in R
$V(R, A)$: Number of distinct values of attribute A in R
Size of Join

Two standard assumptions

1. Containment of value sets:
 - if $V(R, A) \leq V(S, B)$, then all A-values of R are included in B-values of S
 - e.g. satisfied when A is foreign key, B is key

2. Preservation of value sets:
 - For all “non-joining” attributes, the set of distinct values is preserved in join
 - $V(R \bowtie S, C) = V(R, C)$, where $C \neq A$ is an attribute in R
 - $V(R \bowtie S, D) = V(S, D)$, where $D \neq B$ is an attribute in S
 - Helps estimate distinct set size in $R \bowtie S \bowtie T$
Size of Join

Reduction factor
\(f = \frac{1}{\max(V(R, A), V(S, B))} \)

Size = \(T(R) \times T(S) \times f \)

\(R.A = S.B \)

\(R \)
\(S \)

T (R) : Number of tuples in R
B (R) : Number of blocks in R
V(R, A) : Number of distinct values of attribute A in R
Size of Join

Reduction factor
\[f = \frac{1}{\max(V(R, A), V(S, B))} \]

Size = \(T(R) \times T(S) \times f \)

Why max?
• Suppose \(V(R, A) \leq V(S, B) \)
• The probability of a \(A \)-value joining with a \(B \)-value is \(\frac{1}{V(S.B)} = \text{reduction factor} \)
• Under the two assumptions stated earlier + uniformity

Assumes index on both \(A \) and \(B \)
if one index: \(1/V(\ldots, \ldots) \)
if no index: say \(1/10 \)

\(T(R) \): Number of tuples in \(R \)
\(B(R) \): Number of blocks in \(R \)
\(V(R, A) \): Number of distinct values of attribute \(A \) in \(R \)
Task 3: Combine cost of different operators in a plan

With Examples

“Given” the physical plan

- Size = #tuples, NOT #pages
- Cost = #page I/O
- but, need to consider whether the intermediate relation fits in memory, is written back to disk (or on-the-fly goes to the next operator) etc.
Example Query

Student (sid, name, age, address)
Book(bid, title, author)
Checkout(sid, bid, date)

Query:

SELECT S.name
FROM Student S, Book B, Checkout C
WHERE S.sid = C.sid
AND B.bid = C.bid
AND B.author = 'Olden Fames'
AND S.age > 12
AND S.age < 20
Assumptions

- **Student**: S, **Book**: B, **Checkout**: C
 On disk initially

- $S(sid, name, age, addr)$
- $B(bid, title, author)$
- $C(sid, bid, date)$

- Sid, bid foreign key in C referencing S and B resp.
- There are 10,000 Student records stored on 1,000 pages.
- There are 50,000 Book records stored on 5,000 pages.
- There are 300,000 Checkout records stored on 15,000 pages.
- There are 500 different authors.
- Student ages range from 7 to 24.

Warning: a few dense slides next 😊
Physical Query Plan – 1

Q. Compute
1. the cost and cardinality in steps (a) to (d)
2. the total cost

Assumptions (given):
- Data is not sorted on any attributes
- For (b), outer relation fit in memory

(Tuple-based nested loop B inner)
(On the fly) (d) \(\Pi_{name} \)
(On the fly) (c) \(\sigma_{12<age<20 \land author = 'Olden Fames'} \)
(Total-oriented -nested loop, S outer, C inner)

Student S (File scan)
Checkout C (File scan)
Book B (File scan)

\[S(sid, name, age, addr) \quad T(S) = 10,000 \quad B(S) = 1,000 \quad V(B, author) = 500 \]
\[B(bid, title, author) \quad T(B) = 50,000 \quad B(B) = 5,000 \quad 7 \leq age \leq 24 \]
\[C(sid, bid, date) \quad T(C) = 300,000 \quad B(C) = 15,000 \]
S(sid, name, age, addr) \(T(S) = 10,000\)
B(bid, title, author) \(T(B) = 50,000\)
C(sid, bid, date) \(T(C) = 300,000\)

\[B(S) = 1,000\]
\[B(B) = 5,000\]
\[B(C) = 15,000\]

\[V(B, \text{author}) = 500\]

\[7 \leq \text{age} \leq 24\]

\[
\text{Cost} = B(S) + B(S) \times B(C) \\
= 1000 + 1000 \times 15000 \\
= 15,001,000
\]

\[
\text{Cardinality} = T(C) = 300,000
\]

- foreign key join, output pipelined to next join
- Can apply the “formula” as well

\[
\frac{T(S) \times T(C)}{\max (V(S, sid), V(C, sid))} = T(C)
\]

since \(V(S, sid) \geq V(C, sid)\) and \(T(S) = V(S, sid)\)
\[\text{Cost} = T(S \bowtie C) \times B(B) = 300,000 \times 5,000 = 15 \times 10^8 \]

\[\text{Cardinality} = T(S \bowtie C) = 300,000 \]

- foreign key join
- don’t need scanning for outer relation
- outer relation fits in memory
S(sid, name, age, addr) T(S) = 10,000
B(bid, title, author) T(B) = 50,000
C(sid, bid, date) T(C) = 300,000

B(S) = 1,000
B(B) = 5,000
B(C) = 15,000
V(B, author) = 500
7 ≤ age ≤ 24

(c, d)

(On the fly) (d) Π name

(On the fly) (c) σ 12 < age < 20 ∧ author = 'Olden Fames'

(Tuple-based nested loop
B inner)

(On the fly) (b)

(Pe-page-oriented
-nested loop,
S outer, C inner)

Book B
(File scan)

Student S
(File scan)

Checkout C
(File scan)

Cost = 0 (on the fly)
Cardinality = 300,000 * 1/500 * 7/18 = 234 (approx)
(assuming uniformity and independence)
\(S(\text{sid, name, age, addr}) \quad T(S) = 10,000 \quad B(S) = 1,000 \quad V(B, \text{author}) = 500 \)
\(B(\text{bid, title, author}) \quad T(B) = 50,000 \quad B(B) = 5,000 \quad 7 \leq \text{age} \leq 24 \)
\(C(\text{sid, bid, date}) \quad T(C) = 300,000 \quad B(C) = 15,000 \)

\(\text{(Total)} \)

\((\text{On the fly}) \quad (d) \quad \prod_{\text{name}} \)

\((\text{On the fly}) \quad (c) \quad \sigma_{12 < \text{age} < 20} \land \text{author} = \text{	extquoteleft}Olden Fames\textquoteright{} \)

\(\text{(Tuple-based nested loop} \quad \text{B inner)} \)

\(\text{(Page-oriented} \quad -\text{nested loop,} \quad \text{S outer, C inner)} \)

\(\text{Student S} \quad \text{(File scan)} \quad \text{Checkout C} \quad \text{(File scan)} \quad \text{Book B} \quad \text{(File scan)} \)

\(\text{Total cost} = 1,515,001,000 \)

\(\text{Final cardinality} = 234 \text{ (approx)} \)
Physical Query Plan – 2

Assumptions (given):
- Unclustered B+tree index on B.author
- Clustered B+tree index on C.bid
- All index pages are in memory
- Unlimited memory

Q. Compute
1. the cost and cardinality in steps (a) to (g)
2. the total cost

Student S
- Index scan

Checkout C
- Index scan

Book B
- Index scan

Dataset
- S(sid, name, age, addr)
- B(bid, title, author)
- C(sid, bid, date)

Table Statistics
- \(T(S) = 10,000 \)
- \(T(B) = 50,000 \)
- \(T(C) = 300,000 \)

Table Sizes
- \(B(S) = 1,000 \)
- \(B(B) = 5,000 \)
- \(B(C) = 15,000 \)

Variable Costs
- \(V(S, \text{author}) = 500 \)
- \(7 \leq \text{age} \leq 24 \)

Queries
(a) \(\sigma_{\text{author} = \text{"Olden Fames"}} \)
(b) \(\Pi_{\text{bid}} \)
(c) \(\Pi_{\text{sid}} \) (On the fly)
(d) \(\Pi_{\text{sid}} \) (On the fly)
(e) (Block nested loop, S inner)
(f) \(\sigma_{12<\text{age}<20} \)
(g) \(\Pi_{\text{name}} \) (On the fly)
Student S
Bid
Checkout C

<table>
<thead>
<tr>
<th>T(S)</th>
<th>B(S)</th>
<th>V(B, author)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1,000</td>
<td>500</td>
</tr>
<tr>
<td>50,000</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>300,000</td>
<td>15,000</td>
<td></td>
</tr>
</tbody>
</table>

7 <= age <= 24

Cost =
T(B) \div V(B, author)
= 50,000/500
= 100 (unclustered)

Cardinality = 100
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000 B(S) = 1,000 V(B, author) = 500
T(B) = 50,000 B(B) = 5,000 7 <= age <= 24
T(C) = 300,000 B(C) = 15,000

||| (a) σ author = 'Olden Fames'
||| (b) π bid
||| (c) Student S (File scan)
||| (d) π sid (On the fly)
||| (e) (Block nested loop S inner)
||| (f) σ 12<age<20
||| (g) π name

||| (b) π bid
||| (c) Checkout C (Index scan)
||| (d) π sid (On the fly)
||| (e) (Indexed-nested loop, B outer, C inner)

Cost = 0 (on the fly)
Cardinality = 100

Duke CS, Spring 2022
CompSci 516: Database Systems
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000
B(S) = 1,000
V(B, author) = 500
7 <= age <= 24

T(B) = 50,000
B(B) = 5,000

T(C) = 300,000
B(C) = 15,000

- one index lookup per outer B tuple
- 1 book has \(\frac{T(C)}{T(B)} = 6 \) checkouts (uniformity)
- # C tuples per page = \(\frac{T(C)}{B(C)} = 20 \)
- 6 tuples fit in at most 2 consecutive pages (clustered) could assume 1 page as well

Cost <=
100 * 2 = 200

Cardinality =
100 * 6 = 600
Student S

Checkout C

\(f \) \[7 \leq \text{age} \leq 24 \]

\(\sigma_{\text{age} = \text{'Olden Fames'}} \)

\(\Pi_{\text{bid}} \)

\(\Pi_{\text{sid}} \)

\(\prod_{\text{name}} \)

\(\sigma_{12 < \text{age} < 20} \)

\(B(S) = 1,000 \)

\(B(B) = 5,000 \)

\(B(C) = 15,000 \)

\(T(S) = 10,000 \)

\(T(B) = 50,000 \)

\(T(C) = 300,000 \)

\(V(B, \text{author}) = 500 \)

Cost = 0 (on the fly)

Cardinality = 600

Duke CS, Spring 2022

CompSci 516: Database Systems
Student S
Checkout C
Book B

S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

\(T(S) = 10,000 \)
\(B(S) = 1,000 \)
\(V(B, \text{author}) = 500 \)
\(7 \leq \text{age} \leq 24 \)

\(T(B) = 50,000 \)
\(B(B) = 5,000 \)

\(T(C) = 300,000 \)
\(B(C) = 15,000 \)

\(B(S) = 1,000 \)

\(B(S) = 1000 \)

Cardinality = 600
(one student per checkout)

Outer relation is already in (unlimited) memory
need to scan S relation

Cost = 77

Student S
Checkout C
Book B

(On the fly) (g) \(\Pi_{\text{name}} \)

(On the fly) (f) \(\sigma_{12<\text{age}<20} \)

(On the fly) (d) \(\Pi_{\text{sid}} \)

(Indexed-nested loop, B outer, C inner)

Block nested loop S inner

(On the fly) (b) \(\Pi_{\text{bid}} \)

(a) \(\sigma_{\text{author} = 'Olden Fames'} \)

(On the fly) (e)
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000, B(S) = 1,000
T(B) = 50,000, B(B) = 5,000
T(C) = 300,000, B(C) = 15,000

V(B, author) = 500
7 <= age <= 24

Cost = 0 (on the fly)
Cardinality = 600 * 7/18 = 234 (approx)
\begin{itemize}
 \item S(sid, name, age, addr)
 \item B(bid, title, author): Un. B+ on author
 \item C(sid, bid, date): Cl. B+ on bid
\end{itemize}

\textbf{Cost = 0 (on the fly)}

\textbf{Cardinality = 234}

T(S) = 10,000 \quad B(S) = 1,000 \quad V(B, author) = 500

B(B) = 5,000

T(C) = 300,000 \quad B(C) = 15,000

7 \leq \text{age} \leq 24

\begin{tikzpicture}
 \node (s) at (0,0) {Student S (File scan)};
 \node (b) [below of=s] {Book B (Index scan)};
 \node (c) [below of=b] {Checkout C (Index scan)};
 \node (p) [above of=s, yshift=-2cm] {Student S}
 child {node (a) {\(\sigma_{\text{author} = 'Olden Fames'}\)}
 child {node (b) {\(\Pi_{\text{bid}}\)}
 child {node (c) {\(\Pi_{\text{sid}}\)}
 child {node (d) {\(\Pi_{\text{sid}}\)}
 child {node (e) {\(\Pi_{\text{name}}\)}
 child {node (f) {\(\sigma_{12<\text{age}<20}\)}
 child {node (g) {\(\prod_{\text{name}}\)}}}}}}}};
\end{tikzpicture}
\[\begin{align*}
S(\text{sid}, \text{name}, \text{age}, \text{addr}) \\
B(\text{bid}, \text{title}, \text{author}) &: \text{Un. B+ on author} \\
C(\text{sid}, \text{bid}, \text{date}) &: \text{Cl. B+ on bid}
\end{align*} \]

Total cost = 1300
(compare with 1,515,001,000 for plan 1!)

Final cardinality = 234 (approx)
(same as plan 1!)

\[\begin{align*}
T(S) &= 10,000 \\
B(S) &= 1,000 \\
V(B, \text{author}) &= 500 \\
7 &\leq \text{age} &\leq 24
\end{align*} \]

\[\begin{align*}
T(B) &= 50,000 \\
B(B) &= 5,000
\end{align*} \]

\[\begin{align*}
T(C) &= 300,000 \\
B(C) &= 15,000
\end{align*} \]
Task 4:
Efficiently searching the plan space

Use dynamic-programming based Selinger’s algorithm!
Heuristics for pruning plan space

• Apply predicates as early as possible
• Avoid plans with cross products
• Consider only left-deep join trees
Join Trees

Query: \(R1 \Join R2 \Join R3 \Join R4 \Join R5 \)

• Several possible structure of the trees
• Each tree can have \(n! \) permutations of relations on leaves

(physical plan space)
• Different implementation and scanning of intermediate operators for each logical plan

(left-deep join tree)

Why?

(bushy join tree)
Selinger Algorithm

• **Dynamic Programming** based

• **Dynamic Programming:**
 – General algorithmic paradigm
 – Exploits “principle of optimality”
 • Useful reading: Chapter 16, Introduction to Algorithms, Cormen, Leiserson, Rivest

• **Considers the search space of left-deep join trees**
 – reduces search space (only one structure)
 – but still n! permutations
 – interacts well with join algos (esp. NLJ)
 – e.g., might not need to write tuples to disk if enough memory
Principle of Optimality

Optimal for “whole” made up from optimal for “parts”
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Suppose, this is an Optimal Plan for joining \(R1 \ldots R5 \):
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

This has to be the optimal plan for joining \(R3, R2, R4, R1 \)
Principle of Optimality

Query: \(R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5 \)

We are using the associativity and commutativity of joins
\((R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)\)
\(R \bowtie S = S \bowtie R\)

This has to be the optimal plan for joining \(R_3, R_2, R_4\)
Exploiting Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie \ldots \bowtie Rn \)

Both are giving the same result
\(R2 \bowtie R3 \bowtie R1 = R3 \bowtie R1 \bowtie R2 \)

Optimal for joining \(R1, R2, R3 \)
Sub-Optimal for joining \(R1, R2, R3 \)

Suppose you chose the sub-optimal one
Leads to sub-Optimal for joining \(R1, \ldots, Rn \)
Notation

OPT (\{ R1, R2, R3 \}):

Cost of optimal plan to join $R1,R2,R3$

T (\{ R1, R2, R3 \}):

Number of tuples in $R1 \bowtie R2 \bowtie R3$
Simple Cost Model

\[
\text{Cost (} R \bowtie S \text{) } = \text{T}(R) + \text{T}(S)
\]

All other operators have 0 cost

Note: The simple cost model used for illustration only, it is not used in practice
Cost Model Example

\[
\text{Total Cost: } T(R) + T(S) + T(T) + T(X)
\]
Selinger Algorithm:

OPT ({ R1, R2, R3 }):

\[
\text{Min} \begin{cases}
\text{OPT (} \{ R1, R2 \} \text{) } + T(\{ R1, R2 \}) + T(R3) \\
\text{OPT (} \{ R2, R3 \} \text{) } + T(\{ R2, R3 \}) + T(R1) \\
\text{OPT (} \{ R1, R3 \} \text{) } + T(\{ R1, R3 \}) + T(R2)
\end{cases}
\]

Note: Valid only for the simple cost model
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Suppose this path is chosen by the algorithm. How to translate to a query plan?
Selinger Algorithm:

Query: \(R_1 \Join \Join R_2 \Join \Join R_3 \Join \Join R_4 \)

Q. How to optimally compute join of \(\{R_1, R_2, R_3, R_4\} \)?

Ans: First optimally join \(\{R_1, R_3, R_4\} \) then join with \(R_2 \) as inner.

Progress of algorithm
Selinger Algorithm:

Query: \(R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \)

Q. How to optimally compute join of \{R1, R3, R4\}?
Ans: First optimally join \{R1, R3\}, then join with R4 as inner.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Q. How to optimally compute join of \(\{R1, R3\} \)?

Ans: First optimally join \(\{R3\} \), then join with \(R1 \) as inner.

Progress of algorithm

\[
\begin{align*}
\{R1\} & \quad \{R2\} & \quad \{R3\} & \quad \{R4\} \\
\{R1, R2\} & \quad \{R1, R3\} & \quad \{R1, R4\} & \quad \{R2, R3\} & \quad \{R2, R4\} & \quad \{R3, R4\} \\
\{R1, R2, R3\} & \quad \{R1, R2, R4\} & \quad \{R1, R3, R4\} & \quad \{R2, R3, R4\} \\
\{R1, R2, R3, R4\} &
\end{align*}
\]
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Q. How to optimally compute join of \(\{R3\} \)?

Ans: Single relation – so optimally scan \(R3 \).
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Final optimal plan:

NOTE: There is a one-one correspondence between the permutation \((R3, R1, R4, R2)\) and the above left deep plan.
Selinger Algorithm:

Query: $R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4$

NOTE:
This is *NOT* done by top-down recursive calls.
- This is done BOTTOM-UP computing the optimal cost of *all* nodes in this lattice only once (dynamic programming).

Is it efficient? 😊

Reduces $n!$ to 2^n

Other optimizations employed too..
More on Query Optimizations

• See the survey:
 “An Overview of Query Optimization in Relational Systems” by Surajit Chaudhuri (link)
 – Pushing group by before joins
 – Merging views and nested queries
 – “Semi-join”-like techniques for multi-block queries
 • Recall joins in distributed databases
 – Statistics and optimizations
 – Starburst and Volcano/Cascade architecture, etc

• New research topics: Robust query optimization, “learned” query optimization, approximate selectivity estimation...