
1/13/22

1

CompSci 516
Database Systems

Lecture 3
More SQL

Instructor: Sudeepa Roy

1Duke CS, Spring 2022 CompSci 516: Database Systems

1

Announcements - 01/13 (Thus)
• HW1-Part 1 posted on sakai: Resources ->

Homeworks -> HW1
– Part 2 will have SQL queries and data analysis, and

submission instructions
– If you have not started working on it yet, start soon!
– Both parts due on 01/27/2022 (Thursday)

• Threads for project teams posted on Ed
– If you are looking for teammates or a team, please

post

Duke CS, Spring 2022 CompSci 516: Database Systems 2

2

This is an overview and not exhaustive
operations allowed in SQL

You will learn more as you run queries
Try on MovieLens data

Duke CS, Spring 2022 CompSci 516: Database Systems 3

3

The SQL Query Language

• To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

Duke CS, Spring 2022 4

all attributes

CompSci 516: Database Systems

4

Querying Multiple Relations
• What does the following

query compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get: ??

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

5

Querying Multiple Relations
• What does the following

query compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

6

1/13/22

2

Basic SQL Query

• relation-list A list of relation names
– possibly with a “range variable” after each name

• target-list A list of attributes of relations in relation-list
• qualification Comparisons

– (Attr op const) or (Attr1 op Attr2)
– where op is one of = , <, >, <=, >= combined using AND, OR and NOT

• DISTINCT is an optional keyword indicating that the answer should not
contain duplicates
– Default is that duplicates are not eliminated!

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke CS, Spring 2022 7

Read yourself, after reading the next few slides first

CompSci 516: Database Systems

7

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following
conceptual evaluation strategy:
– Compute the cross-product of <relation-list>
– Discard resulting tuples if they fail <qualifications>
– Delete attributes that are not in <target-list>
– If DISTINCT is specified, eliminate duplicate rows

• This strategy is probably the least efficient way to compute a
query!
– An optimizer will find more efficient strategies to compute the

same answers

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke CS, Spring 2022 8

Read yourself, after reading the next few slides first

CompSci 516: Database Systems

8

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

What does this query return?

9

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Step 1: Form “cross product” of Sailor and Reserves

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

10

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Step 2: Discard tuples that do not satisfy <qualification>

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

11

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Step 3: Select the specified attribute(s)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

12

1/13/22

3

Recap
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

1
2

3

Always start from “FROM” -- form cross product
Apply “WHERE” -- filter out some tuples (rows)
Apply “SELECT” -- filter out some attributes (columns)

Ques. Does this get evaluated this way in practice in a Database Management System (DBMS)?

No! This is conceptual evaluation for finding what is correct!
We will learn about join and other operator algorithms later

13

A Note on “Range Variables”

• Sometimes used as a short-name
• The previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!

OR

Duke CS, Spring 2022 14CompSci 516: Database Systems

14

A Note on “Range Variables”

• Really needed only if the same relation appears twice
in the FROM clause (called self-joins)

• Find pairs of Sailors of same age

SELECT S1.sname, S2. name
FROM Sailors S1, Sailors S2
WHERE S1.age = S2.age AND S1.sid < S2.sid

Duke CS, Spring 2022 15

Why do we need the 2nd condition?

CompSci 516: Database Systems

15

Find sailor ids who’ve reserved
at least one boat

SELECT ????
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Spring 2022 16

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

CompSci 516: Database Systems

16

• Would adding DISTINCT to this
query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Spring 2022 17

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Find sailor ids who’ve reserved
at least one boat

CompSci 516: Database Systems

17

Find sailors who’ve reserved at least one boat

• Would adding DISTINCT to this query
make a difference?

• What is the effect of replacing S.sid
by S.sname in the SELECT clause?
– Would adding DISTINCT to this variant of

the query make a difference even if
one sid reserves at most one bid?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Spring 2022 18

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

CompSci 516: Database Systems

18

1/13/22

4

Simple Aggregate Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

19

CREATING / UPDATING TABLES

20

Creating Relations in SQL
• Creates the “Students” relation

– the type (domain) of each field is
specified

– enforced by the DBMS whenever tuples
are added or modified

• As another example, the
“Enrolled” table holds information
about courses that students take

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa REAL)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

Duke CS, Spring 2022 21

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students
Enrolled

CompSci 516: Database Systems

21

Destroying and Altering Relations

• Destroys the relation Students
– The schema information and the tuples are deleted.

DROP TABLE Students

• The schema of Students is altered by adding
a new field; every tuple in the current
instance is extended with a NULL value in
the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Duke CS, Spring 2022 22CompSci 516: Database Systems

22

Adding and Deleting Tuples

• Can insert a single tuple using:
INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

• Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Duke CS, Spring 2022 23CompSci 516: Database Systems

23

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database
– e.g., domain constraints
– ICs are specified when schema is defined
– ICs are checked when relations are modified

• A legal instance of a relation is one that satisfies all specified ICs
– DBMS will not allow illegal instances

• If the DBMS checks ICs, stored data is more faithful to real-world
meaning
– Avoids data entry errors, too!

Duke CS, Spring 2022 24CompSci 516: Database Systems

24

1/13/22

5

Keys in a Database

• Key / Candidate Key
• Primary Key
• Super Key
• Foreign Key

• Primary key attributes are underlined in a schema
– Person(pid, address, name)
– Person2(address, name, age, job)

Duke CS, Spring 2022 25CompSci 516: Database Systems

25

Primary Key Constraints
• A set of fields is a key for a relation if :

1. No two distinct tuples can have same values in all key fields, and
2. This is not true for any subset of the key

• Part 2 false? A superkey

• If there are > 1 keys for a relation, one of the keys is chosen
(by DBA = DB admin) to be the primary key
– E.g., sid is a key for Students
– The set {sid, gpa} is a superkey.

• Any possible benefit to refer to a tuple using primary key
(than any key)?

Duke CS, Spring 2022 26CompSci 516: Database Systems

26

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???)

• “For a given student and course,
there is a single grade.”

Duke CS, Spring 2022 27

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

27

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

Duke CS, Spring 2022 28

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

• “For a given student and course,
there is a single grade.”

CompSci 516: Database Systems

28

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???,
UNIQUE ???)

Duke CS, Spring 2022 29

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

29

Primary and Candidate Keys in SQL

Duke CS, Spring 2022 30

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY sid,
UNIQUE (cid, grade))

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

30

1/13/22

6

Primary and Candidate Keys in SQL

Duke CS, Spring 2022 31

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

• Used carelessly, an IC can prevent the storage
of database instances that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY sid,
UNIQUE (cid, grade))

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

31

Foreign Keys, Referential Integrity
• Foreign key : Set of fields in one relation that is used to

`refer’ to a tuple in another relation
– Must correspond to primary key of the second relation
– Like a `logical pointer’

• E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced, referential

integrity is achieved
– i.e., no dangling references

Duke CS, Spring 2022 32CompSci 516: Database Systems

32

Foreign Keys in SQL
• Only students listed in the Students relation should be

allowed to enroll for courses
CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Duke CS, Spring 2022 33CompSci 516: Database Systems

33

Enforcing Referential Integrity
• Consider Students and Enrolled

– sid in Enrolled is a foreign key that references Students.

• What should be done if an Enrolled tuple with a non-existent
student id is inserted?
– Reject it!

• What should be done if a Students tuple is deleted?
– Three semantics allowed by SQL
1. Also delete all Enrolled tuples that refer to it (cascade delete)
2. Disallow deletion of a Students tuple that is referred to
3. Set sid in Enrolled tuples that refer to it to a default sid
4. (in addition in SQL): Set sid in Enrolled tuples that refer to it to a special

value null, denoting `unknown’ or `inapplicable’

• Similar if primary key of Students tuple is updated
Duke CS, Spring 2022 34CompSci 516: Database Systems

34

Referential Integrity in SQL

• SQL/92 and SQL:1999 support
all 4 options on deletes and
updates.
– Default is NO ACTION

(delete/update is
rejected)

– CASCADE (also delete all
tuples that refer to
deleted tuple)

– SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20) DEFAULT ‘000’,
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

35

Where do ICs Come From?
• ICs are based upon the semantics of the real-world enterprise

that is being described in the database relations

• Can we infer ICs from an instance?
– We can check a database instance to see if an IC is violated, but we

can NEVER infer that an IC is true by looking at an instance.
– An IC is a statement about all possible instances!
– From example, we know name is not a key, but the assertion that sid is

a key is given to us.

• Key and foreign key ICs are the most common; more general
ICs supported too

Duke CS, Spring 2022 36CompSci 516: Database Systems

36

1/13/22

7

Example Instances

• What does the key (sid, bid, day) in
Reserves mean?

• If the key for the Reserves relation
contained only the attributes (sid,
bid), how would the semantics
differ?

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

37

Next: different types of joins

• Theta-join
• Equi-join
• Natural join
• Outer Join

Duke CS, Spring 2022 38CompSci 516: Database Systems

38

Condition/Theta Join

Duke CS, Spring 2022 39

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age >= 40

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

Form cross product, discard rows that do not satisfy the condition

CompSci 516: Database Systems

39

Equi Join

Duke CS, Spring 2022 40

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age = 45

sid sname rating age sid bid day

22 dustin 7 45 22 101 10/10/96

22 dustin 7 45 58 103 11/12/96

31 lubber 8 55 22 101 10/10/96

31 lubber 8 55 58 103 11/12/96

58 rusty 10 35 22 101 10/10/96

58 rusty 10 35 58 103 11/12/96

A special case of theta join
Join condition only has equality predicate =

CompSci 516: Database Systems

40

Natural Join

Duke CS, Spring 2022 41

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT *
FROM Sailors S NATURAL JOIN Reserves R

sid sname rating age bid day

22 dustin 7 45 101 10/10/96

22 dustin 7 45 103 11/12/96

31 lubber 8 55 101 10/10/96

31 lubber 8 55 103 11/12/96

58 rusty 10 35 101 10/10/96

58 rusty 10 35 103 11/12/96

A special case of equi join
Equality condition on ALL common predicates (sid)
Duplicate columns are eliminated

CompSci 516: Database Systems

41

Outer Join

Duke CS, Spring 2022 42

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

SELECT S.sid, R. bid
FROM Sailors S LEFT OUTER JOIN Reserves R
ON S.sid=R.sid

Preserves all tuples from the left table whether or not there is a match
if no match, fill attributes from right with null
Similarly RIGHT/FULL outer join

sid bid

22 101

31 null

58 103

CompSci 516: Database Systems

42

1/13/22

8

Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching
• Find triples (of ages of sailors and two fields defined by expressions)

for sailors
– whose names begin and end with B and contain at least three characters

• LIKE is used for string matching. `_’ stands for any one character
and `%’ stands for 0 or more arbitrary characters
– You will need these often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke CS, Spring 2022 43CompSci 516: Database Systems

43

Find sid’s of sailors who’ve reserved a red or a
green boat

• UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples
– can themselves be the result of

SQL queries

• If we replace OR by AND in the
first version, what do we get?

• Also available: EXCEPT (What
do we get if we replace UNION
by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

44

Find sid’s of sailors who’ve reserved
a red and a green boat

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

45

Find sid’s of sailors who’ve reserved
a red and a green boat

• Does not work ->

• INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.
– Included in the SQL/92

standard, but some systems
don’t support it

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

46

Nested Queries

• A very powerful feature of SQL:
– a WHERE/FROM/HAVING clause can itself contain an SQL query

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries, think of a

nested loops evaluation
– For each Sailors tuple, check the qualification by computing the

subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke CS, Spring 2022 47

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

CompSci 516: Database Systems

47

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN
• Illustrates why, in general, subquery must be re-

computed for each Sailors tuple

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Spring 2022 48

Find names of sailors who’ve reserved boat #103:

CompSci 516: Database Systems

48

1/13/22

9

Nested Queries with Correlation

• If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103
– UNIQUE checks for duplicate tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Spring 2022 49

Find names of sailors who’ve reserved boat #103
at most once:

CompSci 516: Database Systems

49

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE.
• Also available: op ANY, op ALL, op IN

– where op : >, <, =, <=, >=
• Find sailors whose rating is greater than that of some

sailor called Horatio
– similarly ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke CS, Spring 2022 50CompSci 516: Database Systems

50

Recall: Aggregate Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

51

Motivation for Grouping

• So far, we’ve applied aggregate operators to all
(qualifying) tuples
– Sometimes, we want to apply them to each of several groups

of tuples
• Consider: Find the age of the youngest sailor for each

rating level
– In general, we don’t know how many rating levels exist, and

what the rating values for these levels are!
– Suppose we know that rating values go from 1 to 10; we can

write 10 queries that look like this (need to replace i by num):
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Duke CS, Spring 2022 52CompSci 516: Database Systems

52

Group-by evaluation semantics
SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

1
2

5

Always start from “FROM” -- form cross product
Apply “WHERE” -- filter out some tuples (rows)
Apply “GROUP BY” – partition tuples into groups by the value of the grouping attributes
Apply “HAVING” – eliminate groups that do not satisfy the condition
Apply “SELECT” -- compute aggregates for each group

3
4

• Expressions in HAVING must have a single value per group
In effect, an attribute in HAVING that is not an argument of an aggregate op also appears in
GROUP-BY attributes list like, “…GROUP BY bid, sid HAVING bid = 3”

• One answer tuple is generated per qualifying group
• A subset of GROUP BY attributes can appear in SELECT: SELECT A, SUM(C) FROM R GROUP BY A, B

Read again after reading the next few slides

53

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

Duke CS, Spring 2022 54

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

CompSci 516: Database Systems

54

1/13/22

10

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke CS, Spring 2022 55

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)

CompSci 516: Database Systems

55

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke CS, Spring 2022 56

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 2: Apply WHERE clause

CompSci 516: Database Systems

56

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Spring 2022 57

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 3: Apply GROUP BY according to the listed attributes

CompSci 516: Database Systems

57

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Spring 2022 58

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) >
1

Step 4: Apply HAVING clause
The group-qualification is applied to eliminate some groups

CompSci 516: Database Systems

58

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating minage
3 25.5
7 35.0
8 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Spring 2022 59

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 5: Apply SELECT clause
Apply the aggregate operator
At the end, one tuple per group

CompSci 516: Database Systems

59

Nulls and Views in SQL

Duke CS, Spring 2022 60CompSci 516: Database Systems

60

1/13/22

11

Null Values
• Field values in a tuple are sometimes
– unknown, e.g., a rating has not been assigned, or
– inapplicable, e.g., no spouse’s name
– SQL provides a special value null for such situations.

Duke CS, Spring 2022 61CompSci 516: Database Systems

61

Standard Boolean 2-valued logic
• True = 1, False = 0
• Suppose X = 5

– (X < 100) AND (X >= 1) is T ∧ T = T
– (X > 100) OR (X >= 1) is F ∨ T = T
– (X > 100) AND (X >= 1) is F ∧ T = F
– NOT(X = 5) is ¬T = F

• Intuitively,
– T = 1, F = 0
– For V1, V2 ∈ {1, 0}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

Duke CS, Spring 2022 62CompSci 516: Database Systems

62

2-valued logic does not work for nulls

• Suppose rating = null, X = 5
• Is rating>8 true or false?
• What about AND, OR and NOT connectives?

– (rating > 8) AND (X = 5)?

• What if we have such a condition in the
WHERE clause?

Duke CS, Spring 2022 63CompSci 516: Database Systems

63

3-Valued Logic For Null
• TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)

– unknown is treated as 0.5

• Now you can apply rules from 2-valued logic!
– For V1, V2 ∈ {1, 0, 0.5}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

• Therefore,
– NOT UNKNOWN = UNKNOWN
– UNKNOWN OR TRUE = TRUE
– UNKNOWN AND TRUE = UNKNOWN
– UNKNOWN AND FALSE = FALSE
– UNKNOWN OR FALSE = UNKNOWN

Duke CS, Spring 2022 64CompSci 516: Database Systems

64

New issues for Null
• The presence of null complicates many issues. E.g.:

– Special operators needed to check if value IS/IS NOT NULL
– Be careful!
– “WHERE X = NULL” does not work!
– Need to write “WHERE X IS NULL”

• Meaning of constructs must be defined carefully
– e.g., WHERE clause eliminates rows that don’t evaluate to true
– So not only FALSE, but UNKNOWNs are eliminated too
– very important to remember!

• Arithmetic with NULL
– all of +, -, *, / return null if any argument is null

• Can force ”no nulls” while creating a table
– sname char(20) NOT NULL
– primary key is always not nullDuke CS, Spring 2022 65CompSci 516: Database Systems

65

Aggregates with NULL
• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Spring 2022 66

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

CompSci 516: Database Systems

66

1/13/22

12

Aggregates with NULL
• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Spring 2022 67

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

CompSci 516: Database Systems

67

Aggregates with NULL
• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Spring 2022 68

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

CompSci 516: Database Systems

68

Aggregates with NULL
• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Spring 2022 69

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?
• Ans: First 3, then 2

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

CompSci 516: Database Systems

69

Aggregates with NULL
• COUNT, SUM, AVG, MIN, MAX (with or without DISTINCT)

– Discards null values first
– Then applies the aggregate
– Except count(*)

• If only applied to null values, the result is null

Duke CS, Spring 2022 70

• SELECT sum(rating) from R2?
• Ans: 17

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

• SELECT sum(rating) from R3?
• Ans: null

sid sname rating age

22 dustin null 45

31 lubber null 55

58 rusty null 35
R3

CompSci 516: Database Systems

70

Views
• A view is just a relation, but we store a definition, rather than

a set of tuples
CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

• Views can be dropped using the DROP VIEW command

• Views and Security: Views can be used to present necessary information
(or a summary), while hiding details in underlying relation(s)

• the above view hides courses “cid” from E

• More on views later in the course

Duke CS, Spring 2022 71CompSci 516: Database Systems

71

Can create a new table from a query
on other tables too

SELECT S.name, E.grade
INTO YoungActiveStudents
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Duke CS, Spring 2022 72

SELECT… INTO.... FROM.... WHERE

CompSci 516: Database Systems

72

1/13/22

13

“WITH” clause – very useful!
• You will find “WITH” clause very useful!

WITH Temp1 AS
(SELECT ….. ..),
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

Duke CS, Spring 2022 73CompSci 516: Database Systems

73

Overview: General Constraints

• Useful when more general ICs
than keys are involved

• There are also ASSERTIONS to
specify constraints that span
across multiple tables

• There are TRIGGERS too :
procedure that starts
automatically if specified changes
occur to the DBMS

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

74

Triggers
• Trigger: procedure that starts automatically if specified

changes occur to the DBMS
• Three parts:

– Event (activates the trigger)
– Condition (tests whether the triggers should run)
– Action (what happens if the trigger runs)

Duke CS, Spring 2022 75

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Only FYI, not covered in detail

CompSci 516: Database Systems

75

Summary: SQL
• SQL has a huge number of constructs and possibilities

– You need to learn and practice it on your own
– Given a problem, you should be able to write a SQL query and verify

whether a given one is correct

• Pay attention to NULLs

• Can limit answers using “LIMIT” or “TOP” clauses
– e.g. to output TOP 20 results according to an aggregate
– also can sort using ASC or DESC keywords

Duke CS, Spring 2022 76CompSci 516: Database Systems

76

Summary

• Relational Data
• SQL
– Semantic
– Join
– Simple Aggregates
– Nested Queries

• You will learn these further and run yourself on
PostGres on Thursday in the in-class lab on SQL!

Duke CS, Spring 2022 77CompSci 516: Database Systems

77

End of Lecture-3 (01/13)

• TODOs:
1. Start working on HW1-Part I:
• Sakai -> Resources -> Homeworks -> HW1

2. Read course policy (link) carefully before you
start

3. Go to office hours if you have questions
• Links on Ed

4. Check out the Project thread on Ed and keep
looking for teams / teammates

Duke CS, Spring 2022 78CompSci 516: Database Systems

78

https://courses.cs.duke.edu/spring22/compsci516/Lectures/CompSci516-HonorCode.pdf

1/13/22

14

Optional reading for SQL programming

Duke CS, Spring 2022 CompSci 516: Database Systems 79

79

Prepared statements: motivation
while True:

Input bar, beer, price…
cur.execute('''

UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

Check result...

• Every time we send an SQL string to the DBMS, it
must perform parsing, semantic analysis,
optimization, compilation, and finally execution

• A typical application issues many queries with a
small number of patterns (with different
parameter values)

• Can we reduce this overhead?

80

Optional slide

Duke CS, Spring 2022 CompSci 516: Database Systems

80

Prepared statements: example
cur.execute(''' # Prepare once (in SQL).
PREPARE update_price AS # Nam e the prepared plan,
UPDATE Serves
SET price = $1 # and note the $1, $2, … notation for
W HERE bar = $2 AND beer = $3''') # param eter placeholders.
while True:

Input bar, beer, price…

cur.execute('EXECUTE update_price(%s, %s, %s)',\ # Execute m any tim es.
(price, bar, beer))

Note the switch back to %s for param eter placeholders.
Check result...

• The DBMS performs parsing, semantic analysis, optimization, and
compilation only once, when it “prepares” the statement

• At execution time, the DBMS only needs to check parameter types
and validate the compiled plan

• Most other API’s have better support for prepared statements than
psycopg2
– E.g., they would provide a cur.prepare() method

81Duke CS, Spring 2022 CompSci 516: Database Systems

81

SQL Injection Attack

• The school probably had something like:
cur.execute("SELECT * FROM Students " + \

"WHERE (name = '" + name + "')")
where name is a string input by user

• Suppose name = Robert’; DROP TABLE Students; --
– Drop deletes a table
– -- starts a comment
– Becomes SELECT * FROM Students WHERE (name = 'Robert’;

DROP TABLE Students; -- ‘) 82

http://xkcd.com/327/

Duke CS, Spring 2022 CompSci 516: Database Systems

82

Guarding against SQL injection
• Escape certain characters in a user input string, to

ensure that it remains a single string
– E.g., ', which would terminate a string in SQL, must be

replaced by '' (two single quotes in a row) within the
input string

• Luckily, most API’s provide ways to “sanitize”
input automatically (if you use them properly)
– E.g., pass parameter values in psycopg2 through %s’s

• Check out Ashley Madison data breach story or
https://medium.com/five-guys-facts/sql-injection-
98199af86c9

83Duke CS, Spring 2022 CompSci 516: Database Systems

83

