
1/18/22

1

CompSci 516
Database Systems

Lecture 4
Relational Algebra

and
Relational Calculus

Instructor: Sudeepa Roy

1Duke CS, Spring 2022 CompSci 516: Database Systems

1

Announcements
• In-person classes starting Thursday
– Also live streaming and recording

Duke CS, Spring 2022 CompSci 516: Database Systems 2

2

Today’s topics

• Relational Algebra (RA) and Relational
Calculus (RC)

• Reading material
– [RG] Chapter 4 (RA, RC)
– [GUW] Chapters 2.4, 5.1, 5.2

Duke CS, Spring 2022 CompSci 516: Database Systems 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

3

Relational Query Languages

Duke CS, Spring 2022 CompSci 516: Database Systems 4

4

Relational Query Languages

• Query languages: Allow manipulation and
retrieval of data from a database

• Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic
– Allows for much optimization

• Query Languages != programming languages
– QLs not intended to be used for complex calculations
– QLs support easy, efficient access to large data sets

Duke CS, Spring 2022 CompSci 516: Database Systems 5

5

Formal Relational Query Languages

• Two “mathematical” Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:
– Relational Algebra: More operational, very useful

for representing execution plans
– Relational Calculus: Lets users describe what they

want, rather than how to compute it (Non-
operational, declarative, or procedural)

• Note: Declarative (RC, SQL) vs. Operational (RA)

Duke CS, Spring 2022 CompSci 516: Database Systems 6

6

1/18/22

2

Preliminaries (recap)
• A query is applied to relation instances, and the

result of a query is also a relation instance.
– Schemas of input relations for a query are fixed

• query will run regardless of instance

– The schema for the result of a given query is also fixed
• Determined by definition of query language constructs

• Positional vs. named-field notation:
– Positional notation easier for formal definitions, named-

field notation more readable

Duke CS, Spring 2022 CompSci 516: Database Systems 7

7

Example Schema and Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1 S2

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

8

Logic Notations

• $ There exists
• " For all
• ∧ Logical AND
• ∨ Logical OR
• ¬ NOT
• ⇒ Implies

9

Relational Algebra (RA)

10

Relational Algebra

• Takes one or more relations as input, and produces a
relation as output
– operator
– operand
– semantic
– so an algebra!

• Since each operation returns a relation, operations
can be composed
– Algebra is “closed”

Duke CS, Spring 2022 CompSci 516: Database Systems 11

11

Relational Algebra
• Basic operations:

– Selection (σ) Selects a subset of rows from relation
– Projection (π) Deletes unwanted columns from relation.
– Cross-product (x) Allows us to combine two relations.
– Set-difference (-) Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 or in reln. 2.

• Additional operations:
– Intersection (∩)
– join ⨝
– division(/)
– renaming (ρ)
– Not essential, but (very) useful.

Duke CS, Spring 2022 CompSci 516: Database Systems 12

12

1/18/22

3

Projection

sname rating
yuppy 9
lubber 8
guppy 5
rusty 10
p sname rating S, ()2

age
35.0
55.5

page S()2

• Deletes attributes that are not in
projection list.

• Schema of result contains exactly
the fields in the projection list, with
the same names that they had in the
(only) input relation.

• Projection operator has to eliminate
duplicates (Why)
– Note: real systems typically don’t do

duplicate elimination unless the user
explicitly asks for it (performance)

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

10Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

13

Selection

s rating S>8 2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

• Selects rows that satisfy
selection condition

• No duplicates in result.
Why?

• Schema of result identical
to schema of (only) input
relation

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

11Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

14

Composition of Operators

• Result relation can be the
input for another
relational algebra
operation
– Operator composition s rating S>8 2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

p ssname rating rating S, (())
>8 2

15

Union, Intersection, Set-Difference

• All of these operations take two
input relations, which must be
union-compatible:

– Same number of fields.
– `Corresponding’ fields have

the same type
– same schema as the inputs

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S S1 2È

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 12

16

Union, Intersection, Set-Difference

• Note: no duplicate
– “Set semantic”
– SQL: UNION
– SQL allows “bag

semantic” as well:
UNION ALL

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S S1 2È

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 12

17

Union, Intersection, Set-Difference

S S1 2ÇS S1 2-

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 13

18

1/18/22

4

Cross-Product
• Each row of S1 is paired with each row of R.
• Result schema has one field per field of S1 and R, with field

names `inherited’ if possible.
– Conflict: Both S1 and R have a field called sid.

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Duke CS, Spring 2022 CompSci 516: Database Systems 19

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

19

Renaming Operator ⍴

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

§In general, can use ⍴(<Temp>, <RA-expression>)

Duke CS, Spring 2022 CompSci 516: Database Systems 20

(⍴sid → sid1 S1) ⨉ (⍴sid → sid1 R1)
or

⍴(C(1→ sid1, 5 → sid2), S1⨉ R1)
C is the
new relation
name

20

Joins

• Result schema same as that of cross-product.
• Fewer tuples than cross-product, might be able to

compute more efficiently

R c S c R S!" = ´s ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S RS sid R sid1 11 1!" . .<

Duke CS, Spring 2022 CompSci 516: Database Systems 21

21

Find names of sailors who’ve reserved boat
#103

Duke CS, Spring 2022 CompSci 516: Database Systems 22

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

22

Find names of sailors who’ve reserved boat
#103

• Solution 1:

• Solution 2:

p ssname bid serves Sailors((Re))=103 !"

p ssname bid serves Sailors((Re))
=103 !"

Duke CS, Spring 2022 CompSci 516: Database Systems 23

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

23

Expressing an RA expression as a Tree

Duke CS, Spring 2022 CompSci 516: Database Systems 24

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

p ssname bid serves Sailors((Re))=103 !"

Sailors Reserves

σbid=103

⨝sid =sid

πsname

Also called a
logical query plan

24

1/18/22

5

Find sailors who’ve reserved a red or a green boat

• Can identify all red or green boats, then find sailors who’ve reserved one of
these boats:

Can also define Tempboats using union
Try the “AND” version yourself

Duke CS, Spring 2022 CompSci 516: Database Systems 25

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Use of rename operation

25

What about aggregates?

• Extended relational algebra
• 𝝲age, avg(rating) → avgr Sailors
• Also extended to “bag semantic”: allow duplicates

– Take into account cardinality
– R and S have tuple t resp. m and n times
– R ∪ S has t m+n times
– R ∩ S has t min(m, n) times
– R – S has t max(0, m-n) times
– sorting(τ), duplicate removal (ẟ) operators

Duke CS, Spring 2022 CompSci 516: Database Systems 26

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

26

Relational Calculus (RC)

Duke CS, Spring 2022 CompSci 516: Database Systems 27

27

Relational Calculus
• RA is procedural

– πA(σA=a R) and σA=a (πA R) are equivalent but different expressions

• RC
– non-procedural and declarative
– describes a set of answers without being explicit about how they

should be computed

• TRC (tuple relational calculus)
– variables take tuples as values
– we will primarily do TRC

• DRC (domain relational calculus)
– variables range over field values

Duke CS, Spring 2022 CompSci 516: Database Systems 28

28

TRC: example

• Find the name and age of all sailors with a rating above 7

{P | ∃ S ϵ Sailors (S.rating > 7 ⋀ P.sname = S.sname ⋀ P.age = S.age)}

• P is a tuple variable
– with exactly two fields sname and age (schema of the output relation)
– P.sname = S.sname ⋀ P.age = S.age gives values to the fields of an answer

tuple

• Use parentheses, ∀ ∃ ⋁ ⋀ > < = ≠ ¬ etc as necessary
• A ⇒ B is very useful too

– next slide
Duke CS, Spring 2022 CompSci 516: Database Systems 29

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

$ There exists

29

A ⇒ B

• A “implies” B
• Equivalently, if A is true, B must be true
• Equivalently, ¬ A ⋁ B, i.e.

– either A is false (then B can be anything)
– otherwise (i.e. A is true) B must be true

Duke CS, Spring 2022 CompSci 516: Database Systems 30

30

1/18/22

6

Useful Logical Equivalences

• "x P(x) = ¬$x [¬P(x)]

• ¬(P∨Q) = ¬ P∧ ¬ Q
• ¬(P ∧ Q) = ¬ P ∨ ¬ Q
– Similarly, ¬(¬P∨Q) = P∧ ¬ Q etc.

• A Þ B = ¬ A ∨ B

Duke CS, Spring 2022 CompSci 516: Database Systems 31

$ There exists
" For all
∧ Logical AND
∨ Logical OR
¬ NOT

de Morgan’s laws

31

TRC: example

• Find the names of sailors who have reserved at least two boats

Duke CS, Spring 2022 CompSci 516: Database Systems 32

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

32

TRC: example

• Find the names of sailors who have reserved at least two boats

{P | ∃ S ϵ Sailors (∃ R1 ϵ Reserves ∃ R2 ϵ Reserves (S.sid = R1.sid
⋀ S.sid = R2.sid ⋀ R1.bid ≠ R2.bid) ⋀ P.sname = S.sname)}

Duke CS, Spring 2022 CompSci 516: Database Systems 33

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

33

TRC: example

• Find the names of sailors who have reserved all boats
• Called the “Division” operation in RA

Duke CS, Spring 2022 CompSci 516: Database Systems 34

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

34

TRC: example

• Find the names of sailors who have reserved all boats

{P | ∃ S ϵ Sailors [∀B ϵ Boats (∃ R ϵ Reserves (S.sid = R.sid⋀
R.bid = B.bid))] ⋀ (P.sname = S.sname)}

Duke CS, Spring 2022 CompSci 516: Database Systems 35

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

35

TRC: example

• Find the names of sailors who have reserved all red boats

Duke CS, Spring 2022 CompSci 516: Database Systems 36

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

How will you change the previous TRC expression?

36

1/18/22

7

TRC: example

• Find the names of sailors who have reserved all red boats

Recall that A ⇒B is logically equivalent to ¬ A ⋁ B
so ⇒ can be avoided, but it is cleaner and more intuitive

Duke CS, Spring 2022 CompSci 516: Database Systems 37

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

37

DRC: example

• Find the name and age of all sailors with a rating above 7

TRC:
{P | ∃ S ϵ Sailors (S.rating > 7 ⋀ P.name = S.name ⋀ P.age = S.age)}

DRC:
{<N, A> | ∃ <I, N, T, A> ϵ Sailors ⋀ T > 7}

• Variables are now domain variables
• We will use use TRC

– both are equivalent
• Another option to write coming soon!

Duke CS, Spring 2022 CompSci 516: Database Systems 38

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

38

The famous “Beers” database

39

Bars
Each has an address

Drinkers
Each has an address

Beers
Each has a brewer

Drinkers Frequent Bars
“X” times a week

Bars Serve Beers
At price “Y”

Drinkers Likes Beers

39

“Beers” as a Relational Database

40

bar beer price

The Edge Budweiser 2.50

The Edge Corona 3.00

Satisfaction Budweiser 2.25

Name brewer

Budweiser Anheuser-Busch Inc.

Corona Grupo Modelo

Dixie Dixie Brewing

name address

Amy 100 W. Main Street

Ben 101 W. Main Street

Dan 300 N. Duke Street

name address

The Edge 108 Morris
Street

Satisfaction 905 W. Main
Street

drinker bar times_a_week

Ben Satisfaction 2

Dan The Edge 1

Dan Satisfaction 2

drinker beer

Amy Corona

Dan Budweiser

Dan Corona

Ben Budweiser

See online database for more tuples

Bar

Beer

Drinker

Likes

Frequents

Serves

40

More Examples: RC

Duke CS, Spring 2022 CompSci 516: Database Systems 41

Acknowledgement: examples and slides by Profs. Balazinska
and Suciu, and the [GUW] book

UNDERSTAND THE DIFFERENCE IN ANSWERS
FOR ALL FOUR DRINKERS

41

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

42

Find drinkers that frequent some bar that serves some beer they like.

…

42

1/18/22

8

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

43

Find drinkers that frequent some bar that serves some beer they like.

43

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

44

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.
…

Free HW question hint!

44

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

45

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

45

Drinker Category 3

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

46

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

…

46

Drinker Category 3

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

47

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

47

Drinker Category 4

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

48

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

Find drinkers that frequent only bars that serve only beer they like.
…

48

1/18/22

9

Drinker Category 4

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

49

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

Find drinkers that frequent only bars that serve only beer they like.

49

Why should we care about RC
• RC is declarative, like SQL, and unlike RA (which is

operational)
• Gives foundation of database queries in first-order

logic
– you cannot express all aggregates in RC, e.g. cardinality of

a relation or sum (possible in extended RA and SQL)
– still can express conditions like “at least two tuples” (or any

constant)
• RC expression may be much simpler than SQL queries

– and easier to check for correctness than SQL
– power to use " and Þ
– then you can systematically go to a “correct” SQL or

RA query

Duke CS, Fall 2019 CompSci 516: Database Systems 50

50

From RC to SQL
Query: Find drinkers that like some beer (so much) that

they frequent all bars that serve it

CompSci 516: Database Systems 51

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

{x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [" S ϵ Serves (L.beer = S.beer) Þ
$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (F.bar = S.bar)]]}

Drinker category 5!

51

From RC to SQL (or RA)
Query: Find drinkers that like some beer so much that

they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ [¬$ S ϵ Serves [(L.beer = S.beer) ∧
¬ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (F.bar = S.bar)]])

CompSci 516: Database Systems 52

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º {x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [" S ϵ Serves [¬ (L.beer =
S.beer) ∨ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (F.bar = S.bar)]]]}

Duke CS, Fall 2019

{x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [" S ϵ Serves [(L.beer = S.beer) Þ
$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (F.bar = S.bar)]]]}

SQL or RA does not have "!
Now you got all $ and ¬ expressible in RA/SQL

52

From RC to SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT *
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))

CompSci 516: Database Systems 53

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

We will see a
“methodical and correct”
translation trough
“safe queries”
in Datalog

$ L ϵ Likes ∧ ¬$ S ϵ Serves [(L.beer = S.beer) ∧
¬ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (F.bar = S.bar)])

53

Summary

• You learnt three query languages for the Relational DB model
– SQL
– RA
– RC

• All have their own purposes

• You should be able to write a query in all three languages and
convert from one to another
– However, you have to be careful, not all “valid” expressions in one may

be expressed in another
– {S | ¬ (S ϵ Sailors)} – infinitely many tuples – an “unsafe” query
– More when we do “Datalog”, also see Ch. 4.4 in [RG]

Duke CS, Spring 2022 CompSci 516: Database Systems 54

54

