Duke CS, Spring 2022

CompSci 516
Database Systems

Lecture 5
Relational Algebra
and
Relational Calculus

Instructor: Sudeepa Roy

CompSci 516: Database Systems

Announcements (Thurs, 1/20)

* Do not forget your mask in class!
* Project details posted on Sakai
— Standard, semi-standard, open options

* Let me know ASAP if you have not found a project
team or in a < 4-member team
— Team members due Tuesday 1/25
— Proposal due Thursday 2/3

e HW1 duein < 2 weeks
— Tuesday 2/1
— No more extensions — please continue working on it!

* If you are not on Ed or Gradescope, let me know
soon

Duke CS, Spring 2022 CompSci 516: Database Systems 2

Today’s topics

e Relational Algebra (RA) and Relational
Calculus (RC)

* Reading material
— [RG] Chapter 4 (RA, RC)
— [GUW] Chapters 2.4,5.1, 5.2

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2022 CompSci 516: Database Systems 3

Relational Query Languages

Duke CS, Spring 2022 CompSci 516: Database Systems

Relational Query Languages

* Query languages: Allow manipulation and
retrieval of data from a database

* Relational model supports simple, powerful QLs:

— Strong formal foundation based on logic
— Allows for much optimization

 Query Languages != programming languages
— QLs not intended to be used for complex calculations
— QLs support easy, efficient access to large data sets

Duke CS, Spring 2022 CompSci 516: Database Systems 5

Formal Relational Query Languages

 Two “mathematical” Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

— Relational Algebra: More operational, very useful
for representing execution plans

— Relational Calculus: Lets users describe what they
want, rather than how to compute it (Non-
operational, declarative, or procedural)

* Note: Declarative (RC, SQL) vs. Operational (RA)

Duke CS, Spring 2022 CompSci 516: Database Systems 6

Preliminaries (recap)

A queryis applied to relation instances, and the
result of a query is also a relation instance.
— Schemas of input relations for a query are fixed

- query will run regardless of instance

— The schema for the result of a given query is also fixed
- Determined by definition of query language constructs

 Positional vs. named-field notation:

— Positional notation easier for formal definitions, named-
field notation more readable

Duke CS, Spring 2022 CompSci 516: Database Systems

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Example Schema and Instances

51 s2
sid |sname |rating |age sid |sname rating |age
22 dustin | 7 |45.0 ﬁ YLPY z 22(5)
31 |lubber | 8 |55.5 oot |
44 |guppy | S 35.0
=1 |s1d |bid day
22 101 |10/10/96
58 1103 |11/12/96

Logic Notations

3 There exists
VvV Forall

A Logical AND
V Logical OR

- NOT

= Implies

Relational Algebra (RA)

Relational Algebra

* Takes one or more relations as input, and produces a
relation as output

— operator
— operand
— semantic
— 50 an algebral
* Since each operation returns a relation, operations
can be composed
— Algebra is “closed”

Duke CS, Spring 2022 CompSci 516: Database Systems 11

Relational Algebra

* Basic operations:
— Selection (o) Selects a subset of rows from relation
— Projection (mt) Deletes unwanted columns from relation.
— Cross-product (x) Allows us to combine two relations.
— Set-difference (-) Tuples in reln. 1, but not in reln. 2.
— Union (U) Tuplesinreln. 1 orin reln. 2.

* Additional operations:
— Intersection (N)
— join X
— division(/)
— renaming (p)
— Not essential, but (very) useful.

Duke CS, Spring 2022 CompSci 516: Database Systems

S2 |sid |sname |rating |age
1 " 28 |yuppy 9 35.0
PrOJeCtlon 31 |lubber 3 55.5
44 | guppy 5 35.0
: . |58 t 10 35.0
* Deletes attributes that are not in e
projection list. sname rating
yuppy |9
* Schema of result contains exactly lubber |8
the fields in the projection list, with guppy |5
the same names that they had in the rusty |10
(only) input relation. 7T . (52)
Sname,rating
* Projection operator has to eliminate
duplicates (Why) age
— Note: real systems typically don’t do
duplicate elimination unless the user 35.0 ﬂage(SZ)
explicitly asks for it (performance) 55.5

Duke CS, Fall 2016

CompSci 516: Data Intensive Computing Systems

10

Selection

* Selects rows that satisfy

selection condition

* No duplicates in result.
Why?

52 |sid |sname |rating |age
28 |yuppy 9 35.0
31 [|lubber 8 55.5
44 | guppy 5 35.0
58 |rusty 10 [35.0

sid |sname rating |age

28 |yuppy |9 35.0

58 |rusty |10 35.0

o S2
rating > 8()

e Schema of result identical
to schema of (only) input

relation

Duke CS, Fall 2016

CompSci 516: Data Intensive Computing Systems

11

Composition of Operators

e Result relation can be the sid |[sname [rating |age
input for another 28 |yuppy |9 35.0
relational algebra 58 |rusty |10 35.0
operation

— Operator composition o . (S2)
rating>38
sname |rating
yuppy |9
rusty |10
ﬂsname, ratin g(aratin o> 8(52))

s1
sid 'sname rating |age

22 |dustin 7 45.0
31 |lubber | & 55.5
58 |rusty 10 |35.0

e All of these operations take two
input relations, which must be

union-compatible:

— Same number of fields.

— "Corresponding’ fields have

the same type

— same schema as the inputs

Duke CS, Spring 2016

Union, Intersection, Set-Difference

s2
sid 'sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | S 35.0
58 |rusty 10 |35.0
sid |sname |rating |age
22 |dustin |7 45.0
31 |lubber 8 55.5
58 |rusty |10 35.0
44 |euppy |5 35.0
28 |yuppy |9 35.0

CompSci 516: Data Intensive Computing Systems S I U S2

12

51

sid 'sname rating |age

22 |dustin 7 45.0
31 |lubber | & 55.5
58 |rusty 10 |35.0

* Note: no duplicate
— “Set semantic”
— SQL: UNION
— SQL allows “bag

Duke CS, Spring 2016

semantic” as well:
UNION ALL

S2

Union, Intersection, Set-Difference

sid 'sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | S 35.0
58 |rusty 10 |35.0
sid |sname |rating |age
22 |dustin |7 45.0
31 |lubber 8 55.5
58 |rusty |10 35.0
44 |euppy |5 35.0
28 |yuppy |9 35.0

CompSci 516: Data Intensive Computing Systems S I U S2

12

51

Union, Intersection§ZSet-Difference

sid 'sname |rating age
22 |dustin | 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 [35.0
sid |sname |rating |age
22 |dustin |7 45.0
S1-S2

Duke CS,

Spring 2016

sid 'sname |rating |age
28 |yuppy 9 35.0
31 |lubber | 8 55.5
44 | guppy 5 35.0
58 |rusty 10 |35.0
sid |sname rating age
31 |lubber |8 55.5
58 |rusty |10 35.0
SINS2

CompSci 516: Data Intensive Computing Systems

13

Cross-Product

* Each row of S1 is paired with each row of R.

* Result schema has one field per field of S1 and R, with field
names ‘inherited’ if possible.
— Conflict: Both S1 and R have a field called sid.

sid |sname |rating age sid |bid day

22 |dustin | 7 45.0 22 101 [10/10/96
31 |lubber | 8 55.5 58 1103 [11/12/96
58 |rusty 10 [35.0

(sid) sname rating |age |(sid) bid |day
22 |dustin 7 45.0 | 22 101 |10/10/96
22 |dustin 7 45.0 | 58 |103 |11/12/96
31 |lubber 8 55,5 | 22 101 |10/10/96
31 |lubber 8 55,5 | 58 103 |11/12/96
58 |rusty 10 |35.0 | 22 |101 |10/10/96
58 |rusty 10 |35.0 | 58 |103 |11/12/96

Duke CS, Spring 2022 CompSei-516:-Database Systems

Renaming Operator p

(Psig = sig1 S1) X (Psig = sig1 R1)
or

. p(C(1->sidl, 5 - sid2), S1X R1)
new relation |(sid) 'sname rating lage (sid) |bid |day

name 22 |dustin | 7 (450 | 22 |101 [10/10/96
22 |dustin | 7 |45.0 | 58 |103 |11/12/96
31 |lubber | 8 55,5 | 22 101 [10/10/96
31 |lubber | 8 55,5 | 58 103 [11/12/96
58 |rusty 10 |35.0 | 22 |101 |10/10/96
58 |rusty 10 |35.0 | 58 |103 |11/12/96

"|n general, can use p(<Temp>, <RA-expression>)

Duke CS, Spring 2022 CompSci 516: Database Systems

R>< .8 = 0 . (RXS)

Joins

(sid) |sname |rating |age |(sid) |bid |day

22 dustin |7 45.0 |58 103 |11/12/96

31 lubber |8 55.5 |58 103 |11/12/96
Sl < Sl.sid < Rl.sid Kl

e Result schema same as that of cross-product.

* Fewer tuples than cross-product, might be able to
compute more efficiently

Duke CS, Spring 2022 CompSci 516: Database Systems 21

Find names of sailors who’ve reserved boat
#103

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Find names of sailors who’ve reserved boat

Sailors(sid, sname, rating, age)
Boats(bid, bname, color) No join conditions?
“Natural Join”

Reserves(sid, bid, day)

= on all common attributes
+
Duplicate columns removed

e Solution 1: 7 pame (O hid—103 Reserves) > Sailors)

e Solution 2: ﬂsname(abidzlm(ReserveSIXI Sailors))

Expressing an RA expression as a Tree

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

End of Lecture-5

T[sname

DA .,
Also called a sid =sid

logical query plan
Opid=103

Sailors Reserves

7T Reserves) ><a1 Sailors)

sname(;7103

Duke CS, Spring 2022 CompSci 516: Database Systems

24

Start of Lecture-6
Find sailors who've reserved a red or a green boat

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Use of rename operation

 Canidentify all red or green boats, then find sailors who’ve reserved one of
these boats:

o (Tempboats, (o Boats))

color=red' v color="'green'

T onamellempboats><t Reserves>< Sailors)

Can also define Tempboats using union
Try the “AND” version yourself

Duke CS, Spring 2022 CompSci 516: Database Systems 25

What about aggregates?

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

 Extended relational algebra

Vage, avg(rating) - avgr Sailors
* Also extended to “bag semantic”: allow duplicates

— Take into account cardinality

— R and S have tuple t resp. m and n times
— R U S has t m+n times

— R N S has t min(m, n) times

— R —=S has t max(0, m-n) times

— sorting(t), duplicate removal (6) operators

Duke CS, Spring 2022

Relational Calculus (RC)

CompSci 516: Database Systems

27

Relational Calculus

* Equivalent to “First-Order Logic”
* RA s procedural

— Tmia(oa=; R) and oa-, (s R) are equivalent but different expressions
* RC

— non-procedural and declarative

— describes a set of answers without being explicit about how they should be
computed

* TRC (tuple relational calculus)

Sailors(sid, sname, rating, age)

— variables correspond to tuples :

{P | 3 SeSailors (S.Name = ‘Bob’) A P.Sid = S.Sid}

— we will primarily do TRC Output sid-s of sailors with
* DRC (domain relational calculus) name = ‘Bob’

— variables range over attribute values, equivalent to TRC
{x] 3y, z(x, ‘Bob’,y, z) € Sailors}

or{x| 3y, z,w(x,w,Y, z) € Sailors A w = ‘Bob’}

or{x | 3y, z wSailors(x, w,y, z) A w="'Bob’}

Duke CS, Spring 2022 CompSci 516: Database Systems 28

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

* Find the name and age of all sailors with a rating above 7

1 There exists

{P | 3 S eSailors (S.rating > 7 A P.sname = S.sname A P.age = S.age)}

e Pisatuplevariable
— with exactly two fields sname and age (schema of the output relation)

— P.sname = S.sname A P.age = S.age gives values to the fields of an answer
tuple

e Use parentheses,V 3 V A > < = # - etcasnecessary

e A= Bisvery useful too

— next slide
Duke CS, Spring 2022 CompSci 516: Database Systems 29

A= B

* A“implies” B

Equivalently, if A is true, B must be true
Equivalently, - AV B, i.e.

— either A is false (then B can be anything)
— otherwise (i.e. A is true) B must be true

Duke CS, Spring 2022 CompSci 516: Database Systems

30

Useful Logical Equivalences

3 There exists
Y Forall

* VxP(x) = -3dx [-P(x)] A Logical AND

V Logical OR

- NOT

- -(PvQ) = -PA-Q
- -(PAQ) = -PV-Q
— Similarly, =-(-PvQ) = PA - Q etc.

de Morgan’s laws

e A=—B = -AVB

Duke CS, Spring 2022 CompSci 516: Database Systems 31

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

* Find the names of sailors who have reserved at least two boats

Duke CS, Spring 2022 CompSci 516: Database Systems 32

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

* Find the names of sailors who have reserved at least two boats

{P | 3 SeSailors (3 R1 € Reserves 3 R2 € Reserves (S.sid = R1.sid
A S.sid = R2.sid A R1.bid # R2.bid) A P.sname = S.sname)}

Duke CS, Spring 2022 CompSci 516: Database Systems 33

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

* Find the names of sailors who have reserved all boats

Duke CS, Spring 2022 CompSci 516: Database Systems

34

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

* Find the names of sailors who have reserved all boats

{P | 3 S € Sailors [VB € Boats (3 R € Reserves (S.sid = R.sid A
R.bid = B.bid))] A (P.sname = S.sname)}

Duke CS, Spring 2022 CompSci 516: Database Systems

35

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Find the names of sailors who have reserved all red boats

How will you change the previous TRC expression?

Duke CS, Spring 2022 CompSci 516: Database Systems

36

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

* Find the names of sailors who have reserved all red boats

{P | 3 S eSailors (VB € Boats (B.color = ‘red” = (3 R € Reserves
(S.sid = R.sid A R.bid = B.bid))) A P.sname = S.sname)}

Recall that A = B is logically equivalentto- AV B
so = can be avoided, but it is cleaner and more intuitive

Feel freetouse-AVB

Duke CS, Spring 2022 CompSci 516: Database Systems 37

TRC & DRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)
* Find the name and age of all sailors with a rating above 7

TRC:
{P | 3 S € Sailors (S.rating > 7 A P.name = S.name A\ P.age = S.age)}

DRC:
{<N, A> | 3<I,N, T, A> € Sailors AT > 7}

e Variables are now domain variables
e We will use use TRC
— both are equivalent

Duke CS, Spring 2022 CompSci 516: Database Systems

38

The famous “Beers” database

Bars
Y Each has an address

}

Drinkers Frequent Bars

“X” times a week
Bars Serve Beers

erce IIYH

220adt
TTHY

Drinkers Beers
Each has an address Each has a brewer

Drinkers Likes Beers

39

See online database for more tuples

“Beers” as a Relational Database

Serves
Bar bar beer price
.
The Edge Budweiser 2.50
108 Morris
The Edge Street The Edge Corona 3.00
_ _ 905 W. Main Satisfaction | Budweiser 2.25
Satisfaction
Street
Beer drinker bar times_a_week
Ben Satisfaction 2
Budweiser Anheuser-Busch Inc.
Dan The Edge 1
Corona Grupo Modelo _ _
Dan Satisfaction 2
Dixie Dixie Brewing Frequents
Amy Corona
Amy 100 W. Main Street _
Dan Budweiser
Ben 101 W. Main Street .
Dan Corona Likes
Dan 300 N. Duke Street _ 40
Ben Budweiser

More Examples: RC

UNDERSTAND THE DIFFERENCE IN ANSWERS
FOR ALL FOUR DRINKERS

Acknowledgement: examples and slides by Profs. Balazinska
and Suciu, and the [GUW] book

Duke CS, Spring 2022 CompSci 516: Database Systems

41

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beer) D rl N ke r Catego ry 1

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rin ke r Catego ry 1

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

43

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rin ke r Catego ry 2

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

Find drinkers that frequent only bars that serves some beer they like.

44

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rin ke r Catego ry 2

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

Find drinkers that frequent only bars that serve some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker) A [V F1 € Frequents (F.drinker = F1.drinker)
— 3 S € Serves 3 L € Likes [(F1.bar = S.bar) A (F1.drinker = L.drinker) A (S.beer =L.beer)] 1}

45

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rin ke r Catego ry 3

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

Find drinkers that frequent only bars that serve some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker) A [V F1 € Frequents (F.drinker = F1.drinker)
— 3 S € Serves 3 L € Likes [(F1.bar = S.bar) A (F1.drinker = L.drinker) A (S.beer =L.beer)] 1}

Find drinkers that frequent some bar that serves only beers they like.

46

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) D rin ke r Catego ry 3

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

Find drinkers that frequent only bars that serve some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker) A [V F1 € Frequents (F.drinker = F1.drinker)
— 3 S € Serves 3 L € Likes [(F1.bar = S.bar) A (F1.drinker = L.drinker) A (S.beer =L.beer)] 1}

Find drinkers that frequent some bar that serves only beers they like.

{x | 3F € Frequents (F.drinker = x.drinker) A[V S € Serves (F.bar = S.bar) =
3 L € Likes [(F.drinker = L.drinker) A (S.beer =L.beer)]]}

47

Likes(drinker, beer)
Frequents(drinker, bar
Serves(bar, beer)

)
Drinker Category 4

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

Find drinkers that frequent only bars that serve some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker) A [V F1 € Frequents (F.drinker = F1.drinker)
— 3 S € Serves 3 L € Likes [(F1.bar = S.bar) A (F1.drinker = L.drinker) A (S.beer =L.beer)] 1}

Find drinkers that frequent some bar that serves only beers they like.

{x | 3F € Frequents (F.drinker = x.drinker) A[V S € Serves (F.bar = S.bar) =
3 L € Likes [(F.drinker = L.drinker) A (S.beer =L.beer)]]}

Find drinkers that frequent only bars that serve only beer they like.

48

Likes(drinker, beer)
Frequents(drinker, bar

)
servestbarbeen — Drinker Category 4

Find drinkers that frequent some bar that serves some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker A 3 S € Serves 3 L € Likes
(F.drinker = L.drinker) A (F.bar = S.bar) A (S.beer =L.beer))}

Find drinkers that frequent only bars that serve some beer they like.

{x | 3F € Frequents (F.drinker = x.drinker) A [V F1 € Frequents (F.drinker = F1.drinker)
— 3 S € Serves 3 L € Likes [(F1.bar = S.bar) A (F1.drinker = L.drinker) A (S.beer =L.beer)] 1}

Find drinkers that frequent some bar that serves only beers they like.

{x | 3F € Frequents (F.drinker = x.drinker) A[V S € Serves (F.bar = S.bar) =
3 L € Likes [(F.drinker = L.drinker) A (S.beer =L.beer)]]}

Find drinkers that frequent only bars that serve only beer they like.

{x | 3F € Frequents (F.drinker = x.drinker) A [V F1 € Frequents (F.drinker = F1.drinker)
= [V S € Serves (F1.bar = S.bar) =
3 L € Likes [(F.drinker = L.drinker) A (S.beer =L.beer)]]}

49

Why should we care about RC

* RC expression may be much simpler than SQL queries
— and easier to check for correctness than SQL
— power to use V and =

— then you can systematically go to a “correct” SQL or
RA query (example coming soon)

* Note:

— RC is declarative, like SQL, and unlike RA (which is
operational)

— Gives foundation of database queries in first-order logic

— you cannot express all aggregates in RC, e.g., cardinality of
a relation or sum (possible in extended RA and SQL)

— still can express conditions like “at least two tuples” (or any
constant)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

{x | 3 L € Likes (L.drinker = x.drinker) A[V S € Serves (L.beer = S.beer) =
3 F € Frequents [(F.drinker = L.drinker) A (F.bar = S.bar)]]}

Duke CS, Fall 2019 CompSci 516: Database Systems

Drinker category 5!

51

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beer)
From RC to SQL (or RA)

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

{x | 3 L € Likes (L.drinker = x.drinker) A[V S € Serves [(L.beer = S.beer) =
3 F € Frequents [(F.drinker = L.drinker) A (F.bar = S.bar)]] [}

= {x| 3 LeLikes (L.drinker = x.drinker) A[V S € Serves [7 (L.beer =
S.beer) v [F € Frequents [(F.drinker = L.drinker) A (F.bar = S.bar)]]]}

P
Step 1: Replace V with 3 using de Morgan’s Laws -vé(x ﬂ()lé)(i)ame -

Q(x) = Jy. Likes(x, y)A ["3 S € Serves [(L.beer = S.beer) A
= [3 F € Frequents [(F.drinker = L.drinker) A (F.bar = S.bar)]])

SQL or RA does not have V! ~(-PvQ) same as
Now you got all 3 and — expressible in RA/SQL PA=Q

CompSci 516: Database Systems 52

Likes(drinker, beer)

Frequents(drinker, bar)
Serves(bar, beer)

From RC to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it
dL elLikes A 73 S € Serves [(L.beer = S.beer) A
= [F € Frequents [(F.drinker = L.drinker) A (F.bar = S.bar)])

Step 2: Translate into SQL
SELECT DISTINCT L.drinker

FROM Likes L
WHERE not exists
(SELECT S.bar We will see a
FROM Serves S “methodical and correct”
WHERE L.beer=S.beer translation trough
AND not exists (SELECT * “safe queries”

FROM Frequents F in Datalog
WHERE F.drinker=L.drinker
AND F.bar=S.bar))

Duke CS, Fall 2019 CompSci 516: Database Systems 53

Summary

* You learnt three query languages for the Relational DB model
— SQL
— RA
— RC

e All have their own purposes

* You should be able to write a query in all three languages and
convert from one to another

— However, you have to be careful, not all “valid” expressions in one may
be expressed in another

— {S | = (S € Sailors)} — infinitely many tuples — an “unsafe” query
— More when we do “Datalog”, also see Ch. 4.4 in [RG]

Duke CS, Spring 2022 CompSci 516: Database Systems 54

Announcements (Tues, 1/25)

 Team info due today on gradescope

— One “group submission” per team (add everyone’s
name)

— Graded as Communication (2% total — everything
that does not belong to other categories)

e HW1 due next week 2/1 (Tues)

— Check out Ed for questions and discussions

e Quizzes start from this week!

— In-class component (attempt in class = full point, discussed
in class) and take-home component (1 week)

— Useful for preparing for exams
— Lowest score will be dropped

