CompSci 516
Database Systems

Lecture 9-11
Index
(B+-Tree and Hash)

Instructor: Sudeepa Roy
Announcements: 2/3 (Thurs)

• Proposal due Monday 2/7
 – Group assignment on gradescope
 – Check out Sakai pdfs for what to submit

• Quiz1 due Tuesday 2/8

• Quiz2, 3 due Monday 2/14 – 12 noon
 – Finish soon – will help you prepare for midterm

• Create gradiance accounts

• All future deadlines will move to 12 noon!
Reading Material

- **[RG]**
 - Storage: Chapters 8.1, 8.2, 8.4, 9.4-9.7
 - Index: 8.3, 8.5
 - Tree-based index: Chapter 10.1-10.7
 - Hash-based index: Chapter 11

Additional reading

- **[GUW]**
 - Chapters 8.3, 14.1-14.4

Acknowledgement:
The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.
Indexes

• An index on a file speeds up selections on the search key fields for the index
 – Any subset of the fields of a relation can be the search key for an index on the relation.
 – “Search key” is not the same as “key”
 key = minimal set of fields that uniquely identify a tuple

• An index contains a collection of data entries, and supports efficient retrieval of all data entries \(k^* \) with a given key value \(k \)
Remember Terminology

• **Index search key (key): k**
 – Used to search a record

• **Data entry : k**
 – Pointed to by k
 – Contains record id(s) or record itself

• **Records or data**
 – Actual tuples
 – Pointed to by record ids
Alternatives for Data Entry k^* in Index k

- In a data entry k^* we can store:
 1. (Alternative 1) The actual data record with key value k, or
 2. (Alternative 2) $<k, \text{rid}>$
 - rid = record of data record with search key value k, or
 3. (Alternative 3) $<k, \text{rid-list}>$
 - list of record ids of data records with search key k

- Choice of alternative for data entries is orthogonal to the indexing technique used to locate data entries with a given key value k
Alternatives for Data Entries: Alternative 1

- In a data entry k^* we can store:
 1. The actual data record with key value k
 2. <k, rid$>
 • rid = record of data record with search key value k
 3. <k, rid-list$>
 • list of record ids of data records with search key k

- Index structure is a file organization for data records
 – instead of a Heap file or sorted file
- How many different indexes can use Alternative 1?
- At most one index can use Alternative 1
 – Otherwise, data records are duplicated, leading to redundant storage and potential inconsistency
- If data records are very large, #pages with data entries is high
 – Implies size of auxiliary information in the index is also large
Alternatives for Data Entries: Alternative 2, 3

- In a data entry k^* we can store:
 1. The actual data record with key value k
 2. $<k, \text{rid}>$
 - rid = record of data record with search key value k
 3. $<k, \text{rid-list}>$
 - list of record ids of data records with search key k

- Data entries typically much smaller than data records
 - So, better than Alternative 1 with large data records
 - Especially if search keys are small.

- Alternative 3 more compact than Alternative 2
 - but leads to variable-size data entries even if search keys have fixed length.

Advantages/Disadvantages?
Index Classification

- Primary vs. secondary
- Clustered vs. unclustered
- Tree-based vs. Hash-based
Primary vs. Secondary Index

- If search key contains primary key, then called primary index, otherwise secondary
 - Unique index: Search key contains a candidate key

- Duplicate data entries:
 - if they have the same value of search key field k
 - Primary/unique index never has a duplicate
 - Other secondary index can have duplicates
Clustered vs. Unclustered Index

- If order of data records in a file is the same as, or `close to’, order of data entries in an index, then clustered, otherwise unclustered
 - Alternative 1 implies clustered
 - Alternative 2, 3 are typically unclustered
 - unless sorted according to the search key
 - Sometimes, clustered also implies Alternative 1
 - since sorted files are rare
 - A file can be clustered on at most one search key
 - Cost of retrieving data records (range queries) through index varies greatly based on whether index is clustered or not
Review: last lecture (on slide)

- Primary key
- Secondary key
- Unique
- Search key
- Hash
- Tree
- (name, age)
- 6 / 7 = 2 + 1
- 1 / 4
- Search entry for all matching tuples
- rid = data
- Address = (page, slot)
- Clustered
- Unclustered
- 12, 13, 14
- 15, 16, 17, 18
- 12, 13, 14
- 15, 16, 17, 18
Announcements: 2/8 (Tues)

- Quiz1 due Tuesday 2/8
- Quiz2, 3 due Monday 2/14 – \textbf{12 noon}
 - Finish soon – will help you prepare for midterm
 - Create gradiance accounts
- **Midterm next Tuesday 2/15 in class**
 - Unless you are under quarantine (proctored, video on, no virtual background, honor pledge)
 - Closed book, closed notes, no electronics, no communication
 - Everything until Thursday 2/10 in exam
Suppose that Alternative (2) is used for data entries, and that the data records are stored in a Heap file.

To build clustered index, first sort the Heap file:
- with some free space on each page for future inserts
- Overflow pages may be needed for inserts
- Thus, data records are `close to’, but not identical to, sorted.

Clustered vs. Unclustered Index

Clustered

Index entries

direct search for

data entries

Data entries

Data Records

(Index File)

(Data file)

Unclustered
Methods for indexing

• Tree-based
• Hash-based
System Catalogs

- For each index:
 - structure (e.g., B+ tree) and search key fields
- For each relation:
 - name, file name, file structure (e.g., Heap file)
 - attribute name and type, for each attribute
 - index name, for each index
 - integrity constraints
- For each view:
 - view name and definition
- Plus statistics, authorization, buffer pool size, etc.
- (described in [RG] 12.1)

Catalogs are themselves stored as relations!
Tree-based Index
and B^+-Tree
Range Searches

• "Find all students with gpa > 3.0"
 – If data is in sorted file, do binary search to find first such student, then scan to find others.
 – Cost of binary search can be quite high.
Index file format

• Simple idea: Create an “index file”
 – <first-key-on-page, pointer-to-page>, sorted on keys

Can do binary search on (smaller) index file but may still be expensive: apply this idea repeatedly
Indexed Sequential Access Method (ISAM)

- Leaf-pages contain data entry – also some overflow pages
- DBMS organizes layout of the index – a static structure
- If a number of inserts to the same leaf, a long overflow chain can be created
 - affects the performance

Leaf pages contain data entries.
B+ Tree

- Most Widely Used Index
 - a dynamic structure
- Insert/delete at $\log_F N$ cost = height of the tree (cost = I/O)
 - $F = \text{fanout}$, $N = \text{no. of leaf pages}$
 - tree is maintained height-balanced
- Minimum 50% occupancy
 - Each node contains $d <= m <= 2d$ entries
 - Root contains $1 <= m <= 2d$ entries
 - The parameter d is called the order of the tree
- Supports equality and range-searches efficiently
B+ Tree Indexes

- Leaf pages contain data entries, and are chained (prev & next)
- Non-leaf pages have index entries; only used to direct searches:

```
| P0 | K1 | P1 | K2 | P2 | ... | Km | Pm |
```

Duke CS, Spring 2022
Example B+ Tree

• Search begins at root, and key comparisons direct it to a leaf
• Search for 5*, 15*, all data entries >= 24* ...

Based on the search for 15*, we know it is not in the tree!
Example B+ Tree

Entries < 17
- 5
- 13

Entries >= 17
- 27
- 30

Note how data entries in leaf level are sorted

• Find
 - 28*?
 - 29*?
 - All > 15* and < 30*
B+ Trees in Practice

• Typical order: $d = 100$. Typical fill-factor: 67%
 – average fanout $F = 133$
• Typical capacities:
 – Height 4: $133^4 = 312,900,700$ records
 – Height 3: $133^3 = 2,352,637$ records
• Can often hold top levels in buffer pool:
 – Level 1 = 1 page = 8 Kbytes
 – Level 2 = 133 pages = 1 Mbyte
 – Level 3 = 17,689 pages = 133 MBytes
Inserting a Data Entry into a B+ Tree

• Find correct leaf L
• Put data entry onto L
 – If L has enough space, done
 – Else, must split L
 • into L and a new node L2
 • Redistribute entries evenly, copy up middle key.
 • Insert index entry pointing to L2 into parent of L.

• This can happen recursively
 – To split index node, redistribute entries evenly, but push up middle key
 • Contrast with leaf splits

• Splits “grow” tree; root split increases height.
 – Tree growth: gets wider or one level taller at top.
Inserting 8* into Example B+ Tree

• Copy-up: 5 appears in leaf and the level above
• Observe how minimum occupancy is guaranteed

Entry to be inserted in parent node. (Note that 5 is copied up and continues to appear in the leaf.)
Note difference between copy-up and push-up
What is the reason for this difference?
All data entries must appear as leaves
 (for easy range search)
no such requirement for indexes
 (so avoid redundancy)

Entry to be inserted in parent node. (Note that 17 is pushed up and only appears once in the index. Contrast this with a leaf split.)
Example B+ Tree After Inserting 8*

- Notice that root was split, leading to increase in height.
- In this example, we can avoid split by re-distributing entries (insert 8 to the 2nd leaf node from left and copy it up instead of 13)
 - however, this is usually not done in practice – since need to access 1-2 extra pages always (for two siblings), and average occupancy may remain unaffected as the file grows
Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs

• Remove the entry
 – If L is at least half-full, done!
 – If L has only \(d-1 \) entries,
 • Try to re-distribute, borrowing from sibling (adjacent node with same parent as L)
 • If re-distribution fails, merge L and sibling

• If merge occurred, must delete entry (pointing to L or sibling) from parent of L

• Merge could propagate to root, decreasing height

Each non-root node contains \(d \leq m \leq 2d \) entries

See this slide later,
First, see examples on the next few slides
Example Tree: Delete 19*

• We had inserted 8*
• Now delete 19*
• Easy
Example Tree: Delete 19*

After deleting 19*
Example Tree: Delete 20*

Before deleting 20*
Example Tree: Delete 20*

- < 2 entries in leaf-node
- Redistribute

After deleting 20*
- step 1
Example Tree: Delete 20*

- Notice how middle key is copied up

After deleting 20* - step 2
Example Tree: ... And Then Delete 24*

Before deleting 24*
Once again, imbalance at leaf
Can we borrow from sibling(s)?
No – d-1 and d entries (d = 2)
Need to merge
Example Tree: ... And Then Delete 24*

- Imbalance at parent
- Merge again
- But need to “pull down” root index entry

After deleting 24*
- Step 2

Observe ‘toss’ of old index entry 27

Because, three index 5, 13, 30 but five pointers to leaves

Duke CS, Spring 2022
Final Example Tree
Example of Non-leaf Re-distribution

- An intermediate tree is shown
- In contrast to previous example, can re-distribute entry from left child of root to right child

```
Root

22

5 13 17 20

2* 3* 5* 7* 8* 14* 16* 17* 18* 20* 21*

30

22* 27* 29* 33* 34* 38* 39*
```
After Re-distribution

• Intuitively, entries are re-distributed by `pushing through’ the splitting entry in the parent node.
 – It suffices to re-distribute index entry with key 20; we’ve re-distributed 17 as well for illustration.
Duplicates

• First Option:
 – The basic search algorithm assumes that all entries with the same key value resides on the same leaf page
 – If they do not fit, use overflow pages (like ISAM)

• Second Option:
 – Several leaf pages can contain entries with a given key value
 – Search for the left most entry with a key value, and follow the leaf-sequence pointers
 – Need modification in the search algorithm

• if k* = <k, rid>, several entries have to be searched
 – Or include rid in k – becomes unique index, no duplicate
 – If k* = <k, rid-list>, same solution, but if the list is long, again a single entry can span multiple pages
A Note on `Order’

• Order (d)
 – denotes minimum occupancy

• replaced by physical space criterion in practice (`at least half-full’)
 – Index pages can typically hold many more entries than leaf pages
 – Variable sized records and search keys mean different nodes will contain different numbers of entries.
 – Even with fixed length fields, multiple records with the same search key value (duplicates) can lead to variable-sized data entries (if we use Alternative (3))
Summary – Tree index

• Tree-structured indexes are ideal for range-searches, also good for equality searches

• ISAM is a static structure
 – Only leaf pages modified; overflow pages needed
 – Overflow chains can degrade performance unless size of data set and data distribution stay constant

• B+ tree is a dynamic structure
 – Inserts/deletes leave tree height-balanced; \(\log_F N \) cost
 – High fanout (\(F \)) means depth rarely more than 3 or 4
 – Almost always better than maintaining a sorted file
 – Most widely used index in database management systems because of its versatility.
 – One of the most optimized components of a DBMS

• Next: Hash-based index
Hash-based Index
Hash-Based Indexes

- Records are grouped into buckets
 - Bucket = *primary page* plus zero or more *overflow pages*

- Hashing function \(h \):
 - \(h(r) \) = bucket in which (data entry for) record \(r \) belongs
 - \(h \) looks at the *search key* fields of \(r \)
 - No need for “index entries” in this scheme
Example: Hash-based index

Index organized file hashed on AGE, with Auxiliary index on SAL

Employee File hashed on AGE

Alternative 1

Alternative 2
Introduction

• Hash-based indexes are best for equality selections
 – Find all records with name = “Joe”
 – Cannot support range searches
 – But useful in implementing relational operators like join (later)

• Static and dynamic hashing techniques exist
 – trade-offs similar to ISAM vs. B+ trees
Static Hashing

- Pages containing data = a collection of buckets
 - each bucket has one primary page, also possibly overflow pages
 - buckets contain data entries k^*

![Diagram of static hashing with buckets and overflow pages]

$h(key) \mod N$

h

Primary bucket pages

Overflow pages

Duke CS, Spring 2022
Static Hashing

• # primary pages fixed
 – allocated sequentially, never de-allocated, overflow pages if needed.
• $h(k) \mod N$ = bucket to which data entry with key k belongs
 – $N = \# \text{ of buckets}$
Static Hashing

• Hash function works on search key field of record r
 – Must distribute values over range 0 ... N-1
 – \(h(key) = (a \times key + b) \) usually works well
 • bucket = \(h(key) \mod N \)
 – a and b are constants – chosen to tune h

• Advantage:
 – #buckets known – pages can be allocated sequentially
 – search needs 1 I/O (if no overflow page)
 – insert/delete needs 2 I/O (if no overflow page) (why 2?)

• Disadvantage:
 – Long overflow chains can develop if file grows and degrade performance (data skew)
 – Or waste of space if file shrinks

• Solutions:
 – keep some pages say 80% full initially
 – Periodically rehash if overflow pages (can be expensive)
 – or use Dynamic Hashing
Dynamic Hashing Techniques

- Extendible Hashing
- Linear Hashing
Extendible Hashing

• Consider static hashing
• Bucket (primary page) becomes full

• Why not re-organize file by doubling # of buckets?
 – Reading and writing (double # pages) all pages is expensive

• Idea: Use directory of pointers to buckets
 – double # of buckets by doubling the directory, splitting just the bucket that overflowed
 – Directory much smaller than file, so doubling it is much cheaper
 – Only one page of data entries is split
 – No overflow page (new bucket, no new overflow page)
 – Trick lies in how hash function is adjusted
Example

• Directory is array of size 4
 – each element points to a bucket
 – #bits to represent = log 4 = 2 = global depth

• To find bucket for search key r
 – take last global depth # bits of \(h(r) \)
 – assume \(h(r) = r \)
 – If \(h(r) = 5 = \) binary 101
 – it is in bucket pointed to by 01
Example

Insert:
- If bucket is full, split it
- allocate new page
- re-distribute

Suppose inserting 13*
- binary = 1101
- bucket 01
- Has space, insert
Example

Insert:
- If bucket is full, split it
- allocate new page
- re-distribute

Suppose inserting 20*
- binary = 10100
- bucket 00
- Already full
- To split, consider last three bits of 10100
- Last two bits the same 00 – the data entry will belong to one of these buckets
- Third bit to distinguish them
Global depth: Max # of bits needed to tell which bucket an entry belongs to

Local depth: # of bits used to determine if an entry belongs to this bucket
- also denotes whether a directory doubling is needed while splitting
- no directory doubling needed when 9* = 1001 is inserted (LD< GD)
When does bucket split cause directory doubling?

- Before insert, local depth of bucket = global depth
- Insert causes local depth to become > global depth
- directory is doubled by copying it over and `fixing` pointer to split image page
Comments on Extendible Hashing

• If directory fits in memory, equality search answered with one disk access (to access the bucket); else two.
 – 100MB file, 100 bytes/rec, 4KB page size, contains 10^6 records (as data entries) and 25,000 directory elements; chances are high that directory will fit in memory.
 – Directory grows in spurts, and, if the distribution of hash values is skewed, directory can grow large
 – Multiple entries with same hash value cause problems

• Delete:
 – If removal of data entry makes bucket empty, can be merged with `split image`
 – If each directory element points to same bucket as its split image, can halve directory.
Linear Hashing

• This is another dynamic hashing scheme
 – an alternative to Extendible Hashing
• LH handles the problem of long overflow chains
 – without using a directory
 – handles duplicates and collisions
 – very flexible w.r.t. timing of bucket splits
Linear Hashing: Basic Idea

- Use a family of hash functions $h_0, h_1, h_2, ...$
 - $h_i(key) = h(key) \mod(2^iN)$
 - $N =$ initial # buckets
 - h is some hash function (range is not 0 to N-1)
 - If $N = 2^{d_0}$, for some d_0, h_i consists of applying h and looking at the last d_i bits, where $d_i = d_0 + i$
 - Note: $h_i(key) = h(key) \mod(2^{d_0+i})$
 - h_{i+1} doubles the range of h_i
 - if h_i maps to M buckets, h_{i+1} maps to $2M$ buckets
 - similar to directory doubling
 - Suppose $N = 32$, $d_0 = 5$
 - $h_0 = h \mod 32$ (last 5 bits)
 - $h_1 = h \mod 64$ (last 6 bits)
 - $h_2 = h \mod 128$ (last 7 bits) etc.
Linear Hashing: Rounds

• Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin
• During round Level, only h_{Level} and $h_{\text{Level+1}}$ are in use
• The buckets from start to last are split sequentially
 – this doubles the no. of buckets
• Therefore, at any point in a round, we have
 – buckets that have been split
 – buckets that are yet to be split
 – buckets created by splits in this round
Overview of LH File

- In the middle of a round **Level** – originally 0 to N_{Level}

Buckets that existed at the beginning of this round:
- this is the range of h_{Level}

Buckets split in this round:
- if $h_{\text{Level}}(r)$ is in this range, must use $h_{\text{Level}+1}(r)$ to decide if entry is in `split image' bucket.

- if $h_{\text{Level}}(r)$ is in this range, no need

`split image' buckets:
- created (through splitting of other buckets) in this round

- Buckets 0 to Next-1 have been split
- Next to N_{Level} yet to be split
- Round ends when all N_{Level} initial (for round Level) buckets are split
Overview of LH File

• In the middle of a round Level – originally 0 to N_{Level}

Buckets that existed at the beginning of this round:
this is the range of $h_{\text{Level}}(r)$

Buckets split in this round:
if $h_{\text{Level}}(r)$ is in this range, must use $h_{\text{Level}+1}(r)$ to decide if entry is in `split image' bucket.

if $h_{\text{Level}}(r)$ is in this range, no need

`split image' buckets:
created (through splitting of other buckets) in this round

• Search: To find bucket for data entry r, find $h_{\text{Level}}(r)$:
• If $h_{\text{Level}}(r)$ in range `Next to N_{Level}’, r belongs here.
• Else, r could belong to bucket $h_{\text{Level}}(r)$ or $h_{\text{Level}}(r) + N_R$
• Apply $h_{\text{Level}+1}(r)$ to find out

Bucket to be split

Buckets that existed at the beginning of this round:
this is the range of h_{Level}

N_{\text{Level}}

Next

Next - 1

0
Linear Hashing: Insert

- **Insert**: Find bucket by applying $h_{\text{Level}} / h_{\text{Level+1}}$:
 - If bucket to insert into is full:
 1. Add overflow page and insert data entry
 2. Split Next bucket and increment Next

- **Note**: We are going to assume that a split is `triggered` whenever an insert causes the creation of an overflow page, but in general, we could impose additional conditions for better space utilization ([RG], p.380)
Example of Linear Hashing

Level=0, $N_0 = 4 = 2^{d_0}$, $d_0=2$

<table>
<thead>
<tr>
<th>h</th>
<th>h</th>
<th>PRIMARY PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>324436*</td>
</tr>
<tr>
<td>000</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>01</td>
<td>9255*</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
<td>14181030</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
<td>3135711</td>
</tr>
</tbody>
</table>

- Insert 43* = 101011
- $h_0(43) = 11$
- Full
- Insert in an overflow page
- Need a split at Next (=0)
- Entries in 00 is distributed to 000 and 100

(This info is for illustration only!)
(The actual contents of the linear hashed file)
Example of Linear Hashing

Level=0, \(N_0 = 4 = 2^{d_0} \), \(d_0 = 2 \)

Level=0, \(N_0 = 4 = 2^{d_0} \), \(d_0 = 2 \)

- Next is incremented after split
- Note the difference between overflow page of 11 and split image of 00 (000 and 100)
Example of Linear Hashing

• Search for $18^\ast = 10010$
 • between Next (=1) and 4
 • this bucket has not been split
 • 18 should be here

• Search for $32^\ast = 100000$ or $44^\ast = 101100$
• Between 0 and Next-1
 • Need h_1

• Not all insertion triggers split
 • Insert $37^\ast = 100101$
 • Has space

• Splitting at Next?
 • No overflow bucket needed
 • Just copy at the image/original

• Next = $N_{\text{level}-1}$ and a split?
 • Start a new round
 • Increment Level
 • Next reset to 0
Example of Linear Hashing

- Not all insertion triggers split
- Insert $37^* = 100101$
 - Has space

<table>
<thead>
<tr>
<th>Level=0, $N_0 = 4 = 2^{d_0}$, $d_0=2$</th>
<th>Level=0, $N_0 = 4 = 2^{d_0}$, $d_0=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 1</td>
<td>h = 0</td>
</tr>
<tr>
<td>000</td>
<td>00</td>
</tr>
<tr>
<td>001</td>
<td>01</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>00</td>
</tr>
</tbody>
</table>

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

28
Example of Linear Hashing

- Splitting at Next?
 - No overflow bucket needed
 - Just copy at the image/original

Level=0, \(N_0 = 4 = 2^{d_0} \), \(d_0 = 2 \)

Level=0, \(N_0 = 4 = 2^{d_0} \), \(d_0 = 2 \)

\[\begin{array}{c|c|c|c}
\text{h} & \text{h} & \text{PRIMARY} & \text{OVERFLOW} \\
\text{1} & 0 & \text{PAGES} & \text{PAGES} \\
000 & 00 & \text{32*} & \\
001 & 01 & \text{9* 25* 5* 37*} & \\
010 & 10 & \text{14* 18* 10* 30*} & \\
011 & 11 & \text{31* 35* 7* 11*} & \text{43*} \\
100 & 00 & \text{44* 36*} & \\
\end{array} \]

Next=1

\[\begin{array}{c|c|c|c}
\text{h} & \text{h} & \text{PRIMARY} & \text{OVERFLOW} \\
\text{1} & 1 & \text{PAGES} & \text{PAGES} \\
000 & 00 & \text{32*} & \\
001 & 01 & \text{9* 25*} & \text{37*} \\
010 & 10 & \text{14* 18* 10* 30*} & \\
011 & 11 & \text{31* 35* 7* 11*} & \text{43*} \\
100 & 00 & \text{44* 36*} & \\
101 & 01 & \text{5* 37* 29*} & \\
\end{array} \]

Next=2

\[\begin{array}{c|c|c|c}
\text{h} & \text{h} & \text{PRIMARY} & \text{OVERFLOW} \\
\text{0} & \text{0} & \text{PAGES} & \text{PAGES} \\
000 & 00 & \text{32*} & \\
001 & 01 & \text{9* 25*} & \text{37*} \\
010 & 10 & \text{14* 18* 10* 30*} & \\
011 & 11 & \text{31* 35* 7* 11*} & \text{43*} \\
100 & 00 & \text{44* 36*} & \\
101 & 01 & \text{5* 37* 29*} & \\
\end{array} \]

\[\text{insert 29* = 11101} \]
Example: End of a Round

Insert 50* = 110010

Level = 0, \(N_0 = 4 = 2^{d_0} \), \(d_0 = 2 \)
Level = 1, \(N_1 = 8 = 2^{d_1} \), \(d_1 = 3 \)

(after inserting 22*, 66*, 34* - check yourself)

```
Level=0,  N_0= 4 = 2^{d_0} ,  d_0=2

000  00  h_0
001  01  h_1
010  10  PRIMARY PAGES
011  11  OVERFLOW PAGES
100  00  32*
101  01  9* 25*
110  10  66*18*10* 34*
111  11  31*35*7* 11* 43*
```

```
Level=1,  N_1= 8 = 2^{d_1} ,  d_1=3

0000 000  h_2
0001 001  h_1
0010 010  h_0
0011 011
0100 100
0101 101
0110 110
0111 111

0000 00  OVERFLOW PAGES
0010 01  PRIMARY PAGES
0100 10  OVERFLOW PAGES
0110 11
0111 11

32*
9* 25*
66* 18* 10* 34*
50*
43* 35* 11*
44* 36*
5* 37* 29*
14* 30* 22*
31* 7*
```
LH vs. EH

• They are very similar
 – h_i to h_{i+1} is like doubling the directory
 – LH: avoid the explicit directory, clever choice of split
 – EH: always split – higher bucket occupancy

• Uniform distribution: LH has lower average cost
 – No directory level

• Skewed distribution
 – Many empty/nearly empty buckets in LH
 – EH may be better
Summary

• Hash-based indexes: best for equality searches, cannot support range searches.
• Static Hashing can lead to long overflow chains.
• Extendible Hashing avoids overflow pages by splitting a full bucket when a new data entry is to be added to it
 – Duplicates may still require overflow pages
 – Directory to keep track of buckets, doubles periodically
 – Can get large with skewed data; additional I/O if this does not fit in main memory
Summary

• Linear Hashing avoids directory by splitting buckets round-robin, and using overflow pages
 – Overflow pages not likely to be long
 – Duplicates handled easily

• For hash-based indexes, a skewed data distribution is one in which the hash values of data entries are not uniformly distributed
 – bad