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The Meaning of Image Differentiation

What Does Differentiating an Image Mean?

Values Derivatives in x
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The Meaning of Image Differentiation

What Does Differentiating an Image Mean?

0 100 200 300 400 500 600 700

Can we reconstruct
the black curve?
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The Meaning of Image Differentiation

Cameras

principal ray

lens

image plane

1 2 3
camera aperture

in-focus plane

optical axis

focal distance
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A Conceptual Pipeline

A Conceptual Pipeline

I(r, c) C(x, y) D(x, y) Ix(r, c)
i

• Somehow reconstruct the continuous sensor irradiance C
from the discrete image array I
• Differentiate C to obtain D
• Sample the derivatives D back to the pixel grid
• Each would be hard to implement
• Surprisingly, the cascade turns out to be easy!
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A Conceptual Pipeline

From Discrete Array to Sensor Irradiance

I(r, c) C(x, y) D(x, y) Ix(r, c)
i

What would the transformation from I to C look like formally,
if we could find one? Example: Linear interpolation
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A Conceptual Pipeline

Linear Interpolation as a Hybrid Convolution

C(x , y) =
∑∞

i=−∞
∑∞

j=−∞ I(i , j)P(x − j , y − i)
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A Conceptual Pipeline

Gaussian Instead of Triangle

• Noise⇒: fit rather than interpolating
• Noise⇒: filter with a Gaussian

• P(x , y) = G(x , y) ∝ e−
1
2

x2+y2

σ2
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Implementation

Differentiating

I(r, c) C(x, y) D(x, y) Ix(r, c)
i

C(x , y) =
∑∞

i=−∞
∑∞

j=−∞ I(i , j)G(x − j , y − i)
(still don’t know how to do this, just plow ahead)
D(x , y) = ∂C

∂x (x , y) =
∂
∂x

∑∞
i=−∞

∑∞
j=−∞ I(i , j)G(x − j , y − i)

D(x , y) =
∑∞

i=−∞
∑∞

j=−∞ I(i , j)Gx(x − j , y − i)
• We transferred the differentiation to G,

and we know how to do that!
(still don’t know how to implement a hybrid convolution)
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Implementation

Sampling

I(r, c) C(x, y) D(x, y) Ix(r, c)
i

D(x , y) =
∑∞

i=−∞
∑∞

j=−∞ I(i , j)Gx(x − j , y − i)
• We are interested in the values of D(x , y) on the integer

grid: x → c and y → r
Ix(r , c) =

∑∞
i=−∞

∑∞
j=−∞ I(i , j)Gx(c − j , r − i)

Wait! This is a standard, discrete convolution
We know how to do that!
To differentiate an image array, convolve it (discretely)
with the (sampled, truncated) derivative of a Gaussian
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The Derivatives of a 2D Gaussian

The Derivatives of a 2D Gaussian
• The Gaussian function is separable:

G(x , y) ∝ e−
1
2

x2+y2

σ2 = g(x)g(y) where

g(x) = e−
1
2

x2

σ2

Gx(x , y) = ∂G
∂x = ∂g

∂x g(y) = d(x)g(y)

d(x) = dg
dx = − x

σ2 g(x)
• Similarly, Gy(x , y) = g(x)d(y)
• Differentiate (smoothly) in one direction, smooth in the other
• Gx(x , y) and Gy(x , y) are separable as well
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The Derivatives of a 2D Gaussian

The Derivatives of a 2D Gaussian

Gx(x , y) = d(x)g(y) and Gy(x , y) = g(x)d(y)
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The Derivatives of a 2D Gaussian

Normalization

• Can normalize d(c) and g(r) separately
• For smoothing, constants should not change:
• We want k ∗ g = k (we saw this before)
• For differentiation, a unit ramp should not change:

u(r , c) = c is a ramp
• We want u ∗ d = 1 (see notes for math)
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The Image Gradient

The Image Gradient
• Image gradient: ∇I(r , c) = ∂I

∂x = g(r , c) =
[

Ix(r , c)
Iy(r , c)

]
• View 1: Two scalar images Ix(r , c), Iy(r , c)

COMPSCI 527 — Computer Vision Image Differentiation and Image Pyramids 15 / 25



The Image Gradient

The Image Gradient

• View 2: One vector image g(r , c)

• We can now measure changes of image brightness
• Edges are of particular interest

COMPSCI 527 — Computer Vision Image Differentiation and Image Pyramids 16 / 25



Image Pyramids and Scale

Image Pyramids and Scale

↑ smallest denticle
we look for

• Scale:
• Start with smallest template
• Look for larger and larger occurrences

• Larger template ≈ smaller image!
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Image Pyramids and Scale

Scale Budgets
• n × n image, k × k template, scaling s > 1
• Processing a large image with progressively larger

templates with scales s, s2, s3, . . .:
n2(k2 + k2s2 + k2s4 + . . .) = n2k2(1 + s2 + s4 + . . .)

• Series diverges
• Processing progressively smaller images with a small

template:
k2(n2 + n2/s2 + n2/s4 + . . .) = k2n2(1 + 1/s2 + 1/s4 + . . .)

• Series converges to k2n2s2/(s2 − 1)
• For s = 2, the series converges to k2n24/3
• About 33% additional cost relative to processing the original

image alone
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Image Pyramids and Scale

Finer Scales

• Scaling down by s = 2 every time may be overly aggressive
• Let φ = 1/s be the scaling factor
• For 0 < φ < 1, image shrinks. For φ > 1, the image grows

larger
• How to downsample (0 < φ < 1)?
• Two issues: aliasing and non-integer s
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(Spatial Frequency) Aliasing

Aliasing
• Even when s is an integer, pure sampling is a bad idea:

(Spatial frequency) aliasing
• Colors are sampled at locations on the pixel grid
• Nothing to do with the scene

Original Sampled by s = 30, then magnified by 30
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Downsampling and Upsampling

Downsampling = Smoothing + Sampling
• Smooth with a Gaussian blur kernel first, then sample

Original Smoothed with σ = 48,

then sampled by s = 30, then magnified by 30

• We lose detail (blur), but that’s the whole point
• True scale:
• Every pixel in the low-resolution image is a weighted

average of pixel values in the original image
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Downsampling and Upsampling

Key Questions

• How much to smooth before resampling?
• That is, where does σ = 48 come from for φ = 1/30?
• Lots of theory for the optimal multiplier
• Depends on various factors (spectral properties of image

and noise)
• We use what works most of the time, empirically
• Answer: σ ≈ 1.6 s = 1.6/φ

• How to “take one out of every s pixels” when s = 1/φ is not
an integer?
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Bilinear Interpolation

Bilinear Interpolation

• What does it mean to “take one out of every s pixels” when
s = 1/phi is not an integer?

ξ = bxc , η = byc
∆x = x − ξ , ∆y = y − η

I(x) = I(ξ, η) (1−∆x) (1−∆y)

+ I(ξ + 1, η) ∆x (1−∆y)

+ I(ξ, η + 1) (1−∆x) ∆y
+ I(ξ + 1, η + 1) ∆x ∆y
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Bilinear Interpolation

Abstracting Pyramid Operations

J = resize(I, φ):
• If 0 < φ < 1, image shrinks:

Filter with σ = 1.6/φ,
then sample every s = 1/φ > 1 pixels

• If φ ≥ 1, image grows:
No filter. Just sample every s = 1/φ ≤ 1 pixels

• Pyramid operators: Pick a single value of φ ∈ (0,1),
then define

down(X ) = resize(X , φ)
up(X ) = resize(X ,1/φ)

• up is not the inverse of down:
Cannot restore lost information
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The Gaussian Pyramid

A Gaussian Pyramid (φ = 1/2)
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