Image Differentiation and Image Pyramids

COMPSCI 527 - Computer Vision

Outline

(1) The Meaning of Image Differentiation
(2) A Conceptual Pipeline
(3 Implementation
(4) The Derivatives of a 2D Gaussian
(5) The Image Gradient
(6 Image Pyramids and Scale
(3patial Frequency) Aliasing
(8 Downsampling and Upsampling
© Bilinear Interpolation
(10) The Gaussian Pyramid

What Does Differentiating an Image Mean?

Values

Derivatives in x

What Does Differentiating an Image Mean?

Can we reconstruct the black curve?

Cameras

A Conceptual Pipeline

- Somehow reconstruct the continuous sensor irradiance C from the discrete image array I
- Differentiate C to obtain D
- Sample the derivatives D back to the pixel grid
- Each would be hard to implement
- Surprisingly, the cascade turns out to be easy!

From Discrete Array to Sensor Irradiance

What would the transformation from I to C look like formally, if we could find one? Example: Linear interpolation

Linear Interpolation as a Hybrid Convolution

$$
C(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(i, j) P(x-j, y-i)
$$

Gaussian Instead of Triangle

- Noise \Rightarrow : fit rather than interpolating
- Noise \Rightarrow : filter with a Gaussian
- $P(x, y)=G(x, y) \propto e^{-\frac{1}{2} \frac{x^{2}+y^{2}}{\sigma^{2}}}$

Differentiating

(still don't know how to do this, just plow ahead)
$D(x, y)=\frac{\partial C}{\partial x}(x, y)=\frac{\partial}{\partial x} \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(i, j) G(x-j, y-i)$
$D(x, y)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} l(i, j) G_{x}(x-j, y-i)$

- We transferred the differentiation to G, and we know how to do that! (still don't know how to implement a hybrid convolution)

Sampling

- We are interested in the values of $D(x, y)$ on the integer grid: $x \rightarrow c$ and $y \rightarrow r$
$I_{x}(r, c)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(i, j) G_{x}(c-j, r-i)$
Wait! This is a standard, discrete convolution
We know how to do that!
To differentiate an image array, convolve it (discretely) with the (sampled, truncated) derivative of a Gaussian

The Derivatives of a 2D Gaussian

- The Gaussian function is separable:

$$
\begin{aligned}
& G(x, y) \propto e^{-\frac{1 x^{2}+y^{2}}{\sigma^{2}}}=g(x) g(y) \text { where } \\
& g(x)=e^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}} \\
& G_{x}(x, y)=\frac{\partial G}{\partial x}=\frac{\partial g}{\partial x} g(y)=d(x) g(y) \\
& d(x)=\frac{d g}{d x}=-\frac{x}{\sigma^{2}} g(x)
\end{aligned}
$$

- Similarly, $G_{y}(x, y)=g(x) d(y)$
- Differentiate (smoothly) in one direction, smooth in the other
- $G_{x}(x, y)$ and $G_{y}(x, y)$ are separable as well

The Derivatives of a 2D Gaussian

$$
G_{x}(x, y)=d(x) g(y) \text { and } G_{y}(x, y)=g(x) d(y)
$$

Normalization

- Can normalize $d(c)$ and $g(r)$ separately
- For smoothing, constants should not change:
- We want $k * g=k$ (we saw this before)
- For differentiation, a unit ramp should not change: $u(r, c)=c$ is a ramp
- We want $u * d=1$ (see notes for math)

The Image Gradient

- Image gradient: $\nabla I(r, c)=\frac{\partial I}{\partial \mathbf{x}}=\mathbf{g}(r, c)=\left[\begin{array}{l}I_{x}(r, c) \\ I_{y}(r, c)\end{array}\right]$
- View 1: Two scalar images $I_{x}(r, c), I_{y}(r, c)$

The Image Gradient

- View 2: One vector image $\mathbf{g}(r, c)$

- We can now measure changes of image brightness
- Edges are of particular interest

Image Pyramids and Scale

4
${ }^{\uparrow}$ smallest denticle we look for

- Scale:
- Start with smallest template
- Look for larger and larger occurrences
- Larger template \approx smaller image!

Scale Budgets

- $n \times n$ image, $k \times k$ template, scaling $s>1$
- Processing a large image with progressively larger templates with scales s, s^{2}, s^{3}, \ldots :

$$
n^{2}\left(k^{2}+k^{2} s^{2}+k^{2} s^{4}+\ldots\right)=n^{2} k^{2}\left(1+s^{2}+s^{4}+\ldots\right)
$$

- Series diverges
- Processing progressively smaller images with a small template:
$k^{2}\left(n^{2}+n^{2} / s^{2}+n^{2} / s^{4}+\ldots\right)=k^{2} n^{2}\left(1+1 / s^{2}+1 / s^{4}+\ldots\right)$
- Series converges to $k^{2} n^{2} s^{2} /\left(s^{2}-1\right)$
- For $s=2$, the series converges to $k^{2} n^{2} 4 / 3$
- About 33% additional cost relative to processing the original image alone

Finer Scales

- Scaling down by $s=2$ every time may be overly aggressive
- Let $\phi=1 / s$ be the scaling factor
- For $0<\phi<1$, image shrinks. For $\phi>1$, the image grows larger
- How to downsample $(0<\phi<1)$?
- Two issues: aliasing and non-integer s

Aliasing

- Even when s is an integer, pure sampling is a bad idea: (Spatial frequency) aliasing
- Colors are sampled at locations on the pixel grid
- Nothing to do with the scene

Original

Sampled by $s=30$, then magnified by 30

Downsampling $=$ Smoothing + Sampling

- Smooth with a Gaussian blur kernel first, then sample

Original

Smoothed with $\sigma=48$,
then sampled by $s=30$, then magnified by 30

- We lose detail (blur), but that's the whole point
- True scale: a
- Every pixel in the low-resolution image is a weighted average of pixel values in the original image

Key Questions

- How much to smooth before resampling?
- That is, where does $\sigma=48$ come from for $\phi=1 / 30$?
- Lots of theory for the optimal multiplier
- Depends on various factors (spectral properties of image and noise)
- We use what works most of the time, empirically
- Answer: $\sigma \approx 1.6 s=1.6 / \phi$
- How to "take one out of every spixels" when $s=1 / \phi$ is not an integer?

Bilinear Interpolation

- What does it mean to "take one out of every s pixels" when $s=1 /$ phi is not an integer?

$$
\begin{array}{cll}
\xi=\lfloor x\rfloor & , \quad \eta=\lfloor y\rfloor \\
\Delta x=x-\xi & , \quad \Delta y=y-\eta
\end{array}
$$

$$
\begin{aligned}
I(\mathbf{x}) & =I(\xi, \eta)(1-\Delta x)(1-\Delta y) \\
& +I(\xi+1, \eta) \Delta x(1-\Delta y) \\
& +I(\xi, \eta+1)(1-\Delta x) \Delta y \\
& +I(\xi+1, \eta+1) \Delta x \Delta y
\end{aligned}
$$

Abstracting Pyramid Operations

$$
J=\operatorname{resize}(I, \phi):
$$

- If $0<\phi<1$, image shrinks:

Filter with $\sigma=1.6 / \phi$,
then sample every $s=1 / \phi>1$ pixels

- If $\phi \geq 1$, image grows:

No filter. Just sample every $s=1 / \phi \leq 1$ pixels

- Pyramid operators: Pick a single value of $\phi \in(0,1)$, then define

$$
\begin{aligned}
& \operatorname{down}(X)=\text { resize }(X, \phi) \\
& \operatorname{up}(X)=\text { resize }(X, 1 / \phi)
\end{aligned}
$$

- up is not the inverse of down:

Cannot restore lost information

A Gaussian Pyramid ($\phi=1 / 2$)

