Image Differentiation and Image Pyramids
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What Does Differentiating an Image Mean?
Values

Derivatives in x
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A Conceptual Pipeline
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e Somehow reconstruct the continuous sensor irradiance C

from the discrete image array /
Differentiate C to obtain D
Sample the derivatives D back to the pixel grid
Each would be hard to implement

Surprisingly, the cascade turns out to be easy!
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From Discrete Array to Sensor Irradiance

o~ lewyl 8 |pey L o
N ox i

What would the transformation from /to C look like formally,
if we could find one? Example: Linear interpolation
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Linear Interpolation as a Hybrid Convolution

Cx.y) = 22 o 2o I NP(X =iy = 1)
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. AconcepualPpeline
Gaussian Instead of Triangle

¢ Noise =-: fit rather than interpolating
¢ Noise = filter with a Gaussian

1 %242

* P(x,y)=G(x,y) xe 2 2
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Differentiating
I(5; ¢) ~_ |Cxy 0  |P&y) Li(; ¢)
N Ox )

C(X7y) = Z;’i—oo Z/?i—oo I(’?/)G(X _j7y - I)
(still don’t know how to do this, just plow ahead)
D(x,y) = 32(x,¥) = & 20 o2 MU )G(X —jy =)
D(X7y) = Z?i—oo Z_;)i—oo I(’a/)GX(X _j7y - I)
e We transferred the differentiation to G,
and we know how to do that!

(still don’t know how to implement a hybrid convolution)
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Sampling
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D(X7y) = Z;’i—oo Zfi—oo I(Iaj)GX(X _j7y - I)

0.
Ox

D(x, y)

L(x c)

e We are interested in the values of D(x, y) on the integer

grid: x - candy —r

I(r,e) =320 >0 o M) Gx(c —j,r—1)
Wait! This is a standard, discrete convolution
We know how to do that!

To differentiate an image array, convolve it (discretely)
with the (sampled, truncated) derivative of a Gaussian
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- TheDerivatives ofa2D Gaussian
The Derivatives of a 2D Gaussian

e The Gaussian function is separable:

G(x,y) x e_%x%y2 = 9(x) g(y) where
g(x) = e 22
Gx(x,y) = 52 = 52 g(y) = d(x)g(y)

d(x) = ”———mm
e Similarly, G,(x,y) = g(x)d(y)
¢ Differentiate (smoothly) in one direction, smooth in the other
* Gy(x,y)and Gy(x, y) are separable as well
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- TheDerivatives ofa2D Gaussian
The Derivatives of a 2D Gaussian
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~ TheDerivatives ofa 2D Gaussian
Normalization

e Can normalize d(c) and g(r) separately

For smoothing, constants should not change:

We want k x g = k (we saw this before)

For differentiation, a unit ramp should not change:
u(r,c) = cisaramp

We want u « d = 1 (see notes for math)
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The Image Gradient

X

e Image gradient: VI(r,c) = & =d(r,c) = { IXE;

e View 1: Two scalar images I(r, c), I,(r, c)
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The Image Gradient

¢ View 2: One vector image g(r, ¢)

v
st

e We can now measure changes of image brightness
e Edges are of particular interest
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Image Pyramids and Scale

“«

T smallest denticle
we look for

e Scale:
e Start with smallest template
* Look for larger and larger occurrences

e |arger template ~ smaller image!
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Scale Budgets

n x nimage, k x k template, scaling s > 1

Processing a large image with progressively larger
templates with scales s, s?, s2, . . .:

mP(k® + k22 + k2s* +.. ) = nPk?(1 + s> +s* +..)
Series diverges

Processing progressively smaller images with a small
template:

K2 +nm?/s? +mP/s*+..)=k2P(1 +1/s* +1/s* +..))
Series converges to k2n?s?/(s? — 1)
For s = 2, the series converges to k*n?4/3

About 33% additional cost relative to processing the original
image alone
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~lmage Pyramidsand Scale
Finer Scales

Scaling down by s = 2 every time may be overly aggressive
Let ¢ = 1/s be the scaling factor

For 0 < ¢ < 1, image shrinks. For ¢ > 1, the image grows
larger

How to downsample (0 < ¢ < 1)?
e Two issues: aliasing and non-integer s
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Aliasing
e Even when s is an integer, pure sampling is a bad idea:
(Spatial frequency) aliasing
e Colors are sampled at locations on the pixel grid
¢ Nothing to do with the scene

Original Sampled by s = 30, then magnified by 30
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Downsampling = Smoothing + Sampling
e Smooth with a Gaussian blur kernel first, then sample

Original Smoothed with o = 48,

then sampled by s = 30, then magnified by 30

e We lose detail (blur), but that’s the whole point

e True scale:

e Every pixel in the low-resolution image is a weighted
average of pixel values in the original image
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. pownsampingand Upsampling |
Key Questions

¢ How much to smooth before resampling?
® Thatis, where does o = 48 come from for ¢ = 1/307
® Lots of theory for the optimal multiplier
Depends on various factors (spectral properties of image
and noise)
* We use what works most of the time, empirically
® Answer:oc~1.6s=16/¢

e How to “take one out of every s pixels” when s = 1/¢ is not
an integer?
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Bilinear Interpolation

e What does it mean to “take one out of every s pixels” when
s = 1/phi is not an integer?

~

—~
x

~—
I

I(&;n) (1 = Ax) (1 - Ay)
IE+1,n)Ax (1 — Ay)
I&n+1)(1 — Ax) Ay
I +1,n+1)Ax Ay

+ o+ o+

COMPSCI 527 — Computer Vision 23/25



e vzl
Abstracting Pyramid Operations

J=resize(l, ¢):
° |f 0 < ¢ < 1, image shrinks:
Filter with o = 1.6/¢,
then sample every s = 1/¢ > 1 pixels

* If ¢ > 1, image grows:
No filter. Just sample every s = 1/¢ < 1 pixels
e Pyramid operators: Pick a single value of ¢ € (0,1),
then define
down(X) = resize(X,¢)
up(X) = resize(X,1/¢)
® up is not the inverse of down:
Cannot restore lost information
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. TveGaussinpyamid
A Gaussian Pyramid (¢ = 1/2)
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