Linear Systems

COMPSCI 527 - Computer Vision

Outline

(1) Linear Transformations
(2) The Solutions of a Linear System
(3) Orthogonal Matrices
(4) The Singular Value Decomposition
(5) The Pseudoinverse
(6 Homogeneous Linear System on the Unit Sphere

The Four Fundamental Spaces of a Matrix

$\operatorname{null}(A)=\operatorname{span}\left([0,0,1]^{\top}\right)$
row space $(A)=\operatorname{span}($ first two rows $)$

$$
A=\left[\begin{array}{ccc}
\sqrt{3} & \sqrt{3} & 0 \\
-3 & 3 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

range $(A)=\operatorname{span}($ first two columns)
left $\operatorname{null}(A)=\operatorname{span}$ (cross product of first two columns) (comes out to be $\operatorname{span}\left([-1,0, \sqrt{3}]^{T}\right)$)
$\operatorname{range}(A) \leftrightarrow \operatorname{row} \operatorname{space}(A)$

The Solutions of a Linear System

$$
A \mathbf{x}=\mathbf{b}
$$

where A is $m \times n$, rank r

- Key point:
b $\notin \operatorname{range}(A) \Rightarrow$ no solutions
$\mathbf{b} \in \operatorname{range}(A) \Rightarrow \infty^{n-r}$ solutions
(An affine space of solutions)

Compatibility

- Incompatible:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
0 \\
0 \\
b_{3}
\end{array}\right] \quad\left(b_{3} \neq 0\right)
$$

- Compatible:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
0
\end{array}\right]
$$

Under-Determined System

$$
\left[\begin{array}{ll}
2 & 4 \\
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Redundant and Invertible Systems

- Redundant:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]
$$

- Invertible:

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

- Inverse:

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{rr}
0 & 1 \\
3 & -2
\end{array}\right]
$$

$\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{3}\left[\begin{array}{rr}0 & 1 \\ 3 & -2\end{array}\right]\left[\begin{array}{l}4 \\ 3\end{array}\right]$
(This is not how linear systems are typically solved)

Summary

b in range (A)

- This is not operational!
- Orthogonal matrices \rightarrow SVD \rightarrow rank, bases for the four spaces
- SVD gives us much more

Orthogonal Matrices

- A matrix $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is orthogonal if its columns are orthonormal
- Orthonormal: $\mathbf{v}_{i}^{\top} \mathbf{v}_{j}=\delta_{i j}$ (orthogonal and unit norm)
- Orthogonal matrices have left-inverse V^{\top}
- Square orthogonal matrices have left- and right-inverse V^{T}
- Orthogonal matrices do not change the norm of vectors:
$\|V \mathbf{x}\|^{2}=\mathbf{x}^{\top} V^{\top} V \mathbf{x}=\mathbf{x}^{\top} \mathbf{x}=\|\mathbf{x}\|^{2}$

The Singular Value Decomposition: Geometry

$\mathbf{b}=A \mathbf{x} \quad$ where $\quad A=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}\sqrt{3} & \sqrt{3} & 0 \\ -3 & 3 & 0 \\ 1 & 1 & 0\end{array}\right]$

The Singular Value Decomposition: Algebra

$$
A \mathbf{v}_{1}=\sigma_{1} \mathbf{u}_{1}
$$

$$
A \mathbf{v}_{2}=\sigma_{2} \mathbf{u}_{2}
$$

$$
A \mathbf{v}_{3}=\sigma_{3} \mathbf{u}_{3}
$$

$$
\sigma_{1} \geq \sigma_{2}>\sigma_{3}=0
$$

$$
\mathbf{u}_{1}^{T} \mathbf{u}_{1}=1
$$

$$
\mathbf{u}_{2}^{T} \mathbf{u}_{2}=1
$$

$$
\mathbf{u}_{3}^{T} \mathbf{u}_{3}=1
$$

$$
\mathbf{u}_{1}^{T} \mathbf{u}_{2}=0
$$

$$
\mathbf{u}_{1}^{T} \mathbf{u}_{3}=0
$$

$$
\mathbf{u}_{2}^{T} \mathbf{u}_{3}=0
$$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{1}=1
$$

$$
\mathbf{v}_{2}^{T} \mathbf{v}_{2}=1
$$

$$
\mathbf{v}_{3}^{T} \mathbf{v}_{3}=1
$$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0
$$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{3}=0
$$

$$
\mathbf{v}_{2}^{T} \mathbf{v}_{3}=0
$$

The Singular Value Decomposition: General

For any real $m \times n$ matrix A there exist orthogonal matrices

$$
\begin{aligned}
& U=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{m}
\end{array}\right] \in \mathcal{R}^{m \times m} \\
& V=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right] \in \mathcal{R}^{n \times n}
\end{aligned}
$$

such that

$$
U^{\top} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathcal{R}^{m \times n}
$$

where $p=\min (m, n)$ and $\sigma_{1} \geq \ldots \geq \sigma_{p} \geq 0$. Equivalently,

$$
A=U \Sigma V^{T} .
$$

- Original formulation: E. Beltrami, 1873
- Stable, efficient algorithm: Golub \& Reinsch, 1970

Rank and the Four Subspaces

[drawn for $m>n$]

Linear Systems and Reality

$$
A \mathbf{x}=\mathbf{b}
$$

- A, \mathbf{b} come from measurements \Rightarrow noisy entries
- Systems are typically incompatible
- Reinterpret $A \mathbf{x}=\mathbf{b}$ as $\mathbf{x} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}$
- Residual vector $\mathbf{r}=A \mathbf{x}-\mathbf{b}$
- "Least-Squares solution of $A \mathbf{x}=\mathbf{b}$ "
- A.k.a. LSE solution (Least Squared-Error)

Incompatibility and Under-Determinacy

- A system can be incompatible and its LSE solution can be underdetermined

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
x_{1}+x_{2} & =3 \\
x_{3} & =2
\end{aligned} \quad A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

- An LSE solution turns out to be $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]^{\top}$ with residual $\mathbf{r}=\boldsymbol{A} \mathbf{x}-\mathbf{b}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]$ (split the residual evenly) which has norm $\sqrt{2}$
- Any $\mathbf{x}^{\prime}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+\alpha\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ is as good as \mathbf{x}

Uniqueness

- So while the LSE solution always exists, it is not always unique
- It is often convenient to have just one solution, uniquely defined
- Of all solutions, pick the "shortest" one (minimum L_{2} norm)
- If you wanted to be cute:

$$
\hat{\mathbf{x}}=\arg \underbrace{\min _{\text {set }}}_{\mathbf{x} \in \arg \min _{\mathbf{y}}\|A \mathbf{y}-\mathbf{b}\|}\|\mathbf{x}\|
$$

- $\hat{\mathbf{x}}$ turns out to be unique

The Minimum-Norm LSE Solution

- Theorem: The minimum-norm least-squares solution to a linear system $A \mathbf{x}=\mathbf{b}$, that is, the shortest vector \mathbf{x} that achieves the

$$
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2},
$$

is unique, and is given by

$$
\begin{equation*}
\hat{\mathbf{x}}=V \Sigma^{\dagger} U^{T} \mathbf{b} \tag{1}
\end{equation*}
$$

where $A=U \Sigma V^{T}$ is the SVD of A and

$$
\Sigma^{\dagger}=\left[\begin{array}{ccccccccc}
1 / \sigma_{1} & & & & & & 0 & \cdots & 0 \\
& \ddots & & & & & & & \\
& & 1 / \sigma_{r} & & & & \vdots & & \vdots \\
& & & 0 & & & & & \\
& & & & \ddots & & & & \\
& & & & & 0 & 0 & \cdots & 0
\end{array}\right]
$$

- The matrix $A^{\dagger}=V \Sigma^{\dagger} U^{T}$ is called the pseudoinverse of A

Homogeneous Linear Systems

- The pseudoinverse yields a fully general LSE solution to $A \mathbf{x}=\mathbf{b}$
- $\hat{\mathbf{x}}=$ the shortest vector \mathbf{x} that achieves the $\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|$
- So it works also when $\mathbf{b}=\mathbf{0}$
- However, the solution is trivial:

The minimum-norm \mathbf{x} that minimizes $\|A \mathbf{x}\|$ is $\mathbf{x}=\mathbf{0}$

- So if this is your problem, you are probably looking at the wrong problem!
- More interesting (and different) problem:

$$
\hat{\mathbf{x}} \in \arg \min _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|
$$

- A constrained minimization problem: $\mathbf{x} \in$ unit sphere
- Solution is no longer necessarily unique

LSE Solution of the Homogeneous Problem on the Sphere Let

$$
A=U \Sigma V^{T}
$$

be the singular value decomposition of the $m \times n$ matrix A. Then, the last column of V,

$$
\mathbf{x}=\mathbf{v}_{n}
$$

is \boldsymbol{a} unit-norm least-squares solutions to the homogeneous linear system

$$
A \mathbf{x}=\mathbf{0} .
$$

Thus, if $r=\operatorname{rank}(A)$, the value of the residual is

$$
\min _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|=\left\|A \mathbf{v}_{n}\right\|= \begin{cases}0 & \text { if } r<n \\ \sigma_{n} & \text { otherwise } .\end{cases}
$$

In this expression, σ_{n} is the last singular value of A

