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Motion Field and Displacement

R

/\ X(t)

X(s)

Follow the image projection x(t) of a single world point
Displacement. d(t, s) = x(t) — x(s), a difference in positions
Motion field: v(t) = 2\ an instantaneous velocity

A field b/c it can be defined for every x in the image plane
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Constancy of Appearance

® /mages do not move
e What is assumed to remain constant across images?
e Motion estimation is impossible without such an assumption

¢ Most generic assumption: The appearance of a point does
not change with time or viewpoint

¢ |f two image points in two images correspond, they look the
same

e “Appearance:” Image irradiance e(x, t) (brightness)

e [f colors differ, so do brightnesses most of the time, so color
does not help much

¢ We only consider gray images and video from now on
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Constancy of Appearance

XI

/ x'=x(1)

X =X(5)

e |f two image points in two images correspond, they look the
same

e |f x attime s and X’ at time ¢ correspond, then
e(x, s) = e(x', t) (finite-displacement formulation)

e Equivalently, w = 0 (differential formulation)
e This is the key constraint for motion estimation
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Motion Field and Optical Flow

e Extreme violations of constancy of appearance:

B. K. P. Horn, Robot Vision, MIT Press, 1986

e |ll-defined distinction:

* Motion field ~ true motion
® Optical flow = locally observed motion

e Still assume constancy of appearance almost everywhere

e What else can we do?
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. MotonFieldand OpticalFlow |
The Brightness Change Constraint Equation

e The appearance of a point does not change with time or
viewpoint: X0 — g
Total derivative, not partial:

(((j;) ) def limagq SXHAD. t-z?t)—e(x(t), 1)

Use chain rule on = 0 to obtain the
Brightness Change Constraint Equation (BCCE)

de(x(t),t)

oe dx 8e 0
oxT dt
oy def d" is the unknown motion field

This is the key constraint for motion estimation

de(x(t),t) def t e(x(t), t+At)—e(x(t), t))
ot - At

(Compare: iMAt—0
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The Aperture Problem

¢ [ssues arise even when the appearance is constant

oe oe
B : —— V4 — =
CCE oxT ' il 0

e One equation in two unknowns: the aperture problem
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N e pkic ol
The Aperture Problem

oe oe
BCCE: =
CC IxT vV + B 0

e The BCCE is always under-determined:
the aperture problem

e Cannot recover motion based on point measurements alone

e Can at most recover the normal component along the
gradient Ve(x) = % (if the gradient is nonzero):

v(x) € |[Vex)||"! [Ve(x)]" v(x)
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Estimating the Motion Field

¢ Because of the aperture problem, we can only estimate
several displacement vectors d or motion field vectors v
simultaneously, not each individually
e Estimation problems are coupled across the image
e Global estimation methods
® A data term measures deviations from BCCE at every pixel
in the image
* A smoothness term measures deviations of the motion field
v(x) from smoothness
* Minimize a linear combination of the two types of terms,
integrated over the image
® Tend to blur the solution near motion boundaries
(discontinuities in the motion field)
* Will see some global methods later
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~ ThelucasanadeTracker
Local Estimation Methods

¢ Local methods are an alternative to global ones
e Basic idea:
® The image displacement d in a small window around a pixel
x is assumed to be constant over the window (extreme local
smoothness)
* Write one BCCE for every pixel in the window
¢ Solve for the one displacement that satisfies all these
equations as much as possible
® A linear system to be solved (in the LSE sense)

e These are (feature) window tracking methods

e Any method needs to account for the difference between
velocity and displacement
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Window Tracking

e Given images f(x) and g(x), a point X; in image f, and a
square window W(x;) of side-length 2h + 1 centered at X,

what are the coordinates x4, = X + d*(x;) of the
corresponding window’s center in image g?

e d*(x;) € R?is the displacement of that point feature
e Assumption 1: The whole window translates
e Assumption 2: d*(x;) < h
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General Window Tracking Strategy

e Let w(x) be the indicator function of W(0)

e Measure the dissimilarity between W(x;) in f and a
candidate window W(x; + d) in g with the loss

L(xs,d Z[g (x +d) — F(x)]* w(x — xy)
e Minimize L(X¢,d) overd: d*(X;) = arg mingeg L(X¢, d)

e The search range R C R? is a square centered at the origin
¢ Half-side of R is <« h (the half-side of W)
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Obvious Failure Points

e Multiple motions in the same window

(Less dramatic cases arise as well)

e Actual motion large compared with h
(We’ll come back to this later)
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A Softer Window

Make w(x) a (truncated) Gaussian rather than a box

w(x) { () it x| < hand x| < h
0 otherwise

Dissimilarity L(x, d) = >, [g(x +d) — f(X)]* w(x — X¢)

depends more on what’s around the window center

Reduces the effects of multiple motions

Does not eliminate them
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How to Minimize L(x¢,d)?
e Method 1: Exhaustive search over a grid of d
e Advantages: Unlikely to be trapped in local minima

3557

Disadvantage: Fixed resolution

Accurate motion is sometimes necessary

Using a very fine grid would be very expensive

Exhaustive search may provide a good initialization
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How to Minimize L(x¢,d)?

Method 2: Use a gradient-descent method

Search space has low dimension (d € R?), so we can use
Newton’s method for faster convergence

Compute gradient and Hessian of

L(d) = >>,[g(x +d) — f(x)]* w(x — x/)
(omitted x; from arguments of L for simplicity)
Take Newton steps

Technical difficulty: the unknown d appears inside g(x + d),
and computing a Hessian would require computing
second-order derivatives of an image, which is available
only through its pixels

Second derivatives of images are very sensitive to noise
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~ ThelucasanadeTracker
The Lucas-Kanade Tracker, 1981

Instead of computing the Hessian of
L(d) = >>,[g(x + d) — F(x)]* w(x — x¢),
linearize g(x + d) ~ g(x) + [Vg(x)]"d
This brings d “outside g”

L(d) is now quadratic in d, and we can find a minimum in
closed form by taking the gradient (no Hessian required)

Only differentiate the image once to get Vg(x)
Since the solution d; relies on an approximation, we iterate:
Shift g by d; to make the residual d smaller, and repeat

This method works for losses that are sums of squares, and
is called the Newton-Raphson method
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~ ThelucasanadeTracker
Lucas-Kanade Overall Scheme

e |nitialize: dy =0

Find a displacement sy by minimizing linearized L(do + S)
Shift g by s; to obtain g;
Accumulate: di = dg + sS4

Find a displacement s, by minimizing linearized L(d; + s)
Shift g; by s, to obtain g,
Accumulate: do = dy + S5
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Lucas-Kanade Derivation
e Letd; =s; + ...+ s; (accumulated shifts, initially 0)

def

* Let gi(x) = g(x+d;)
e We seek d;, 1 = d; + s;.1 by minimizing the following over s

L(d; +8) = 3=, [gi(x + 8) — F(X)]* w(x - x/)
with linearization g;(x + s) ~ g¢(X) + [Vg:(X)]"s, so that

L(d;+s) = Z[gf(x +8) = F(F° w(x —xy)
~ Z[gr +[Vgi(x)]"s — (0] w(x —xy),

a quadratic function of s
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~ TheLucasKanadeTracker
Lucas-Kanade Derivation, Cont'd

e Gradient of
L(di +8) = > {g:i(x) + [Vgi(x)]"s — f(x)}* w(x — /) is
VL(di+s) =237, Vgr(x){g:(X)+[Vgi(x)] s —f(X)} w(x—x/)
e Setting to zero yields
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The Core System of Lucas-Kanade

Linear, 2 x 2 system
As=Db

where

A= ngt(x [Vai(x)]” w(x —x¢)

and

b=2 Va(x)[f(x) - gi(x)] w(x —x).

Solution yields s; (real-valued)

Shift image g; is by s; by bilinear interpolation — g1
Accumulate shiftsd; 1 =d; +s; (9:+1 is g shifted by d;)
This shift makes f and g; more similar within the windows
Repeat until convergence. Final d; is the answer

COMPSCI 527 — Computer Vision 23/24



. TeLucssKanadeTracker
If Motion is Large, Track in a Pyramid

L7

A large motion at fine level is small at coarse level

(Only drawing one frame per level, for simplicity)

Start at the coarsest level (same window size at all levels)
Multiply solution d by 2 to initialize tracking at the next level
Motion is progressively refined at every level
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