Image Motion

COMPSCI 527 - Computer Vision

Outline

© Image Motion
(2) Constancy of Appearance
(3) Motion Field and Optical Flow
(4) The Aperture Problem
(5) Estimating the Motion Field
© The Lucas-Kanade Tracker

Continuous and Discrete Image

Motion Field and Displacement

- Follow the image projection $\mathbf{x}(t)$ of a single world point
- Displacement: $\mathbf{d}(t, s)=\mathbf{x}(t)-\mathbf{x}(s)$, a difference in positions
- Motion field: $\mathbf{v}(t)=\frac{d \mathbf{x}(t)}{d t}$, an instantaneous velocity
- A field b / c it can be defined for every \mathbf{x} in the image plane

Constancy of Appearance

- Images do not move
- What is assumed to remain constant across images?
- Motion estimation is impossible without such an assumption
- Most generic assumption: The appearance of a point does not change with time or viewpoint
- If two image points in two images correspond, they look the same
- "Appearance:" Image irradiance $e(\mathbf{x}, t)$ (brightness)
- If colors differ, so do brightnesses most of the time, so color does not help much
- We only consider gray images and video from now on

Constancy of Appearance

- If two image points in two images correspond, they look the same
- If \mathbf{x} at time s and \mathbf{x}^{\prime} at time t correspond, then $e(\mathbf{x}, s)=e\left(\mathbf{x}^{\prime}, t\right)$ (finite-displacement formulation)
- Equivalently, $\frac{d e(\mathbf{x}(t), t)}{d t}=0$ (differential formulation)
- This is the key constraint for motion estimation

Motion Field and Optical Flow

- Extreme violations of constancy of appearance:

B. K. P. Horn, Robot Vision, MIT Press, 1986
- III-defined distinction:
- Motion field \approx true motion
- Optical flow \approx locally observed motion
- Still assume constancy of appearance almost everywhere
- What else can we do?

The Brightness Change Constraint Equation

- The appearance of a point does not change with time or viewpoint: $\quad \frac{d e(\mathbf{x}(t), t)}{d t}=0$
- Total derivative, not partial:

$$
\frac{d e(\mathbf{x}(t), t)}{d t} \stackrel{\text { def }}{=} \lim _{\Delta t \rightarrow 0} \frac{e(\mathbf{x}(t+\Delta t), t+\Delta t)-e(\mathbf{x}(t), t)}{\Delta t}
$$

- Use chain rule on $\frac{d e(x(t), t)}{d t}=0$ to obtain the Brightness Change Constraint Equation (BCCE)

$$
\frac{\partial \boldsymbol{e}}{\partial \mathbf{x}^{T}} \frac{d \mathbf{x}}{d t}+\frac{\partial \boldsymbol{e}}{\partial t}=0
$$

- $\mathbf{v} \xlongequal{\text { def }} \frac{d \mathbf{x}}{d t}$ is the unknown motion field
- This is the key constraint for motion estimation
(Compare: $\left.\quad \frac{\partial e(\mathbf{x}(t), t)}{\partial t} \stackrel{\text { def }}{=} \lim _{\Delta t \rightarrow 0} \frac{e(\mathbf{x}(t), t+\Delta t)-e(\mathbf{x}(t), t)}{\Delta t}\right)$

The Aperture Problem

- Issues arise even when the appearance is constant

$$
\text { BCCE: } \quad \frac{\partial e}{\partial \mathbf{x}^{T}} \mathbf{v}+\frac{\partial e}{\partial t}=0
$$

- One equation in two unknowns: the aperture problem

The Aperture Problem

$$
\text { BCCE: } \quad \frac{\partial \boldsymbol{e}}{\partial \mathbf{x}^{T}} \mathbf{v}+\frac{\partial \boldsymbol{e}}{\partial t}=0
$$

- The BCCE is always under-determined: the aperture problem
- Cannot recover motion based on point measurements alone
- Can at most recover the normal component along the gradient $\nabla e(\mathbf{x})=\frac{\partial e}{\partial \mathbf{x}^{T}}$ (if the gradient is nonzero):
$v(\mathbf{x}) \stackrel{\text { def }}{=}\|\nabla e(\mathbf{x})\|^{-1}[\nabla e(\mathbf{x})]^{T} \mathbf{v}(\mathbf{x})$

Estimating the Motion Field

- Because of the aperture problem, we can only estimate several displacement vectors d or motion field vectors \mathbf{v} simultaneously, not each individually
- Estimation problems are coupled across the image
- Global estimation methods
- A data term measures deviations from BCCE at every pixel in the image
- A smoothness term measures deviations of the motion field $\mathbf{v}(\mathbf{x})$ from smoothness
- Minimize a linear combination of the two types of terms, integrated over the image
- Tend to blur the solution near motion boundaries (discontinuities in the motion field)
- Will see some global methods later

Local Estimation Methods

- Local methods are an alternative to global ones
- Basic idea:
- The image displacement din a small window around a pixel \mathbf{x} is assumed to be constant over the window (extreme local smoothness)
- Write one BCCE for every pixel in the window
- Solve for the one displacement that satisfies all these equations as much as possible
- A linear system to be solved (in the LSE sense)
- These are (feature) window tracking methods
- Any method needs to account for the difference between velocity and displacement

Window Tracking

- Given images $f(\mathbf{x})$ and $g(\mathbf{x})$, a point \mathbf{x}_{f} in image f, and a square window $W\left(\mathbf{x}_{f}\right)$ of side-length $2 h+1$ centered at \mathbf{x}_{f}, what are the coordinates $\mathbf{x}_{g}=\mathbf{x}_{f}+\mathbf{d}^{*}\left(\mathbf{x}_{f}\right)$ of the corresponding window's center in image g ?
- $\mathbf{d}^{*}\left(\mathbf{x}_{f}\right) \in \mathbb{R}^{2}$ is the displacement of that point feature
- Assumption 1: The whole window translates
- Assumption 2: $\mathbf{d}^{*}\left(\mathbf{x}_{f}\right) \ll h$

General Window Tracking Strategy

- Let $w(\mathbf{x})$ be the indicator function of $W(\mathbf{0})$
- Measure the dissimilarity between $W\left(\mathbf{x}_{f}\right)$ in f and a candidate window $W\left(\mathbf{x}_{f}+\mathbf{d}\right)$ in g with the loss

$$
L\left(\mathbf{x}_{f}, \mathbf{d}\right)=\sum_{\mathbf{x}}[g(\mathbf{x}+\mathbf{d})-f(\mathbf{x})]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right)
$$

- Minimize $L\left(\mathbf{x}_{f}, \mathbf{d}\right)$ over \mathbf{d} : $\quad \mathbf{d}^{*}\left(\mathbf{x}_{f}\right)=\arg \min _{\mathbf{d} \in R} L\left(\mathbf{x}_{f}, \mathbf{d}\right)$
- The search range $R \subseteq \mathbb{R}^{2}$ is a square centered at the origin
- Half-side of R is $\ll h$ (the half-side of W)

Obvious Failure Points

- Multiple motions in the same window

(Less dramatic cases arise as well)
- Actual motion large compared with h
(We'll come back to this later)

A Softer Window

- Make $w(\mathbf{x})$ a (truncated) Gaussian rather than a box

$$
w(\mathbf{x}) \propto \begin{cases}e^{\frac{1}{2}\left(\frac{\|x\|}{\sigma}\right)^{2}} & \text { if }\left|x_{1}\right| \leq h \text { and }\left|x_{2}\right| \leq h \\ 0 & \text { otherwise }\end{cases}
$$

- Dissimilarity $L\left(\mathbf{x}_{f}, \mathbf{d}\right)=\sum_{\mathbf{x}}[g(\mathbf{x}+\mathbf{d})-f(\mathbf{x})]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right)$ depends more on what's around the window center
- Reduces the effects of multiple motions
- Does not eliminate them

How to Minimize $L\left(\mathbf{x}_{f}, \mathbf{d}\right)$?

- Method 1: Exhaustive search over a grid of \mathbf{d}
- Advantages: Unlikely to be trapped in local minima

- Disadvantage: Fixed resolution
- Accurate motion is sometimes necessary
- Using a very fine grid would be very expensive
- Exhaustive search may provide a good initialization

How to Minimize $L\left(\mathbf{x}_{f}, \mathbf{d}\right)$?

- Method 2: Use a gradient-descent method
- Search space has low dimension ($\mathbf{d} \in \mathbb{R}^{2}$), so we can use Newton's method for faster convergence
- Compute gradient and Hessian of $L(\mathbf{d})=\sum_{\mathbf{x}}[g(\mathbf{x}+\mathbf{d})-f(\mathbf{x})]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right)$ (omitted \mathbf{x}_{f} from arguments of L for simplicity)
- Take Newton steps
- Technical difficulty: the unknown d appears inside $g(\mathbf{x}+\mathbf{d})$, and computing a Hessian would require computing second-order derivatives of an image, which is available only through its pixels
- Second derivatives of images are very sensitive to noise

The Lucas-Kanade Tracker, 1981

- Instead of computing the Hessian of $L(\mathbf{d})=\sum_{\mathbf{x}}[g(\mathbf{x}+\mathbf{d})-f(\mathbf{x})]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right)$, linearize $g(\mathbf{x}+\mathbf{d}) \approx g(\mathbf{x})+[\nabla g(\mathbf{x})]^{\top} \mathbf{d}$
- This brings \mathbf{d} "outside g "
- $L(\mathbf{d})$ is now quadratic in \mathbf{d}, and we can find a minimum in closed form by taking the gradient (no Hessian required)
- Only differentiate the image once to get $\nabla g(\mathbf{x})$
- Since the solution d_{1} relies on an approximation, we iterate: Shift g by \mathbf{d}_{1} to make the residual \mathbf{d} smaller, and repeat
- This method works for losses that are sums of squares, and is called the Newton-Raphson method

Lucas-Kanade Overall Scheme

- Initialize: $\mathbf{d}_{0}=\mathbf{0}$
- Find a displacement \mathbf{s}_{1} by minimizing linearized $L\left(\mathbf{d}_{0}+\mathbf{s}\right)$
- Shift g by \mathbf{s}_{1} to obtain g_{1}
- Accumulate: $\mathbf{d}_{1}=\mathbf{d}_{0}+\mathbf{s}_{1}$
- Find a displacement \mathbf{s}_{2} by minimizing linearized $L\left(\mathbf{d}_{1}+\mathbf{s}\right)$
- Shift g_{1} by \mathbf{s}_{2} to obtain g_{2}
- Accumulate: $\mathbf{d}_{2}=\mathbf{d}_{1}+\mathbf{s}_{2}$

Lucas-Kanade Derivation

- Let $\mathbf{d}_{t}=\mathbf{s}_{1}+\ldots+\mathbf{s}_{t}$ (accumulated shifts, initially $\mathbf{0}$)
- Let $g_{t}(\mathbf{x}) \stackrel{\text { def }}{=} g\left(\mathbf{x}+\mathbf{d}_{t}\right)$
- We seek $\mathbf{d}_{t+1}=\mathbf{d}_{t}+\mathbf{s}_{t+1}$ by minimizing the following over \mathbf{s} $L\left(\mathbf{d}_{t}+\mathbf{s}\right)=\sum_{\mathbf{x}}\left[g_{t}(\mathbf{x}+\mathbf{s})-f(\mathbf{x})\right]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right)$ with linearization $g_{t}(\mathbf{x}+\mathbf{s}) \approx g_{t}(\mathbf{x})+\left[\nabla g_{t}(\mathbf{x})\right]^{\top} \mathbf{s}$, so that

$$
\begin{aligned}
L\left(\mathbf{d}_{t}+\mathbf{s}\right) & =\sum_{\mathbf{x}}\left[g_{t}(\mathbf{x}+\mathbf{s})-f(\mathbf{x})\right]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right) \\
& \approx \sum_{\mathbf{x}}\left[g_{t}(\mathbf{x})+\left[\nabla g_{t}(\mathbf{x})\right]^{\top} \mathbf{s}-f(\mathbf{x})\right]^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right),
\end{aligned}
$$

a quadratic function of \mathbf{s}

Lucas-Kanade Derivation, Cont'd

- Gradient of

$$
\begin{aligned}
& L\left(\mathbf{d}_{t}+\mathbf{s}\right) \approx \sum_{\mathbf{x}}\left\{g_{t}(\mathbf{x})+\left[\nabla g_{t}(\mathbf{x})\right]^{T} \mathbf{s}-f(\mathbf{x})\right\}^{2} w\left(\mathbf{x}-\mathbf{x}_{f}\right) \text { is } \\
& \nabla L\left(\mathbf{d}_{t}+\mathbf{s}\right) \approx 2 \sum_{\mathbf{x}} \nabla g_{t}(\mathbf{x})\left\{g_{t}(\mathbf{x})+\left[\nabla g_{t}(\mathbf{x})\right]^{T} \mathbf{s}-f(\mathbf{x})\right\} w\left(\mathbf{x}-\mathbf{x}_{f}\right)
\end{aligned}
$$

- Setting to zero yields

The Core System of Lucas-Kanade

Linear, 2×2 system

$$
A \mathbf{s}=\mathbf{b}
$$

where

$$
A=\sum_{\mathbf{x}} \nabla g_{t}(\mathbf{x})\left[\nabla g_{t}(\mathbf{x})\right]^{\top} w\left(\mathbf{x}-\mathbf{x}_{f}\right)
$$

and

$$
\mathbf{b}=\sum_{\mathbf{x}} \nabla g_{t}(\mathbf{x})\left[f(\mathbf{x})-g_{t}(\mathbf{x})\right] w\left(\mathbf{x}-\mathbf{x}_{f}\right) .
$$

- Solution yields \mathbf{s}_{t} (real-valued)
- Shift image g_{t} is by \mathbf{s}_{t} by bilinear interpolation $\rightarrow g_{t+1}$
- Accumulate shifts $\mathbf{d}_{t+1}=\mathbf{d}_{t}+\mathbf{s}_{t} \quad\left(g_{t+1}\right.$ is g shifted by $\left.\mathbf{d}_{t}\right)$
- This shift makes f and g_{t} more similar within the windows
- Repeat until convergence. Final \mathbf{d}_{t} is the answer

If Motion is Large, Track in a Pyramid

- A large motion at fine level is small at coarse level
- (Only drawing one frame per level, for simplicity)
- Start at the coarsest level (same window size at all levels)
- Multiply solution d by 2 to initialize tracking at the next level
- Motion is progressively refined at every level

