Deep Networks for Image-to-Image Prediction

COMPSCI 527 — Computer Vision
Outline

1. Image-to Image Prediction

2. Motion Estimation
 - Classical Approaches
 - Methods based on Neural Networks
 - FlowNet, 2015
 - Unsupervised Training?

3. Image Segmentation
 - Architecture
 - Loss Functions
Image-to Image Prediction

- Recognition: 1 image $\rightarrow K$ label scores (funnel)
- Motion estimation: 2 images \rightarrow 2 images
- Image segmentation: 1 image $\rightarrow K$ score images (K soft-max scores at every pixel)

www.irisa.fr/texmex/people/jain
sthalles.github.io/deep_segmentation_network/
Architecture of Image-to-Image Predictors

- The output is as large as the input
- *Retinotopic output*: values map to pixel locations
- The funnel-like architecture cannot be used
- An *hourglass* architecture is used instead

(image from Dosovitskiy *et al.*, FlowNet, 2015)

- A. k. a. *contraction-expansion, encoder-decoder*, ...
- Let’s see image motion estimation first, then image segmentation
Classical Approaches to Motion Estimation

- For decades, global methods were cast as optimization problems to be solved at inference time.
- Roughly: Find a flow field $u(x)$ such that
 \[
 \int [g(x + u(x)) - f(x)]^2 \, dx + \lambda \int \left\| \frac{\partial u}{\partial x} \right\|^2 \, dx \text{ is small}
 \]
- The resulting normal equation is discretized, and leads to a large, linear system in the unknowns $u(x)$, one 2-vector per pixel.
- The flow is not smooth at motion boundaries, various techniques have been proposed to improve results there.
- However, these methods seem to work fairly well, see [link](https://people.csail.mit.edu/celiu/OpticalFlow/)
Why Use Neural Networks?

- A method based on neural networks needs many examples

\[(x, y) = ((f, g), u)\]
Why Use Neural Networks?

- Annotation is difficult: Hundreds of thousands or millions of flow vectors per example
- How do we know the flow at every pixel anyway?
- So why bother with deep learning?
- Replace a complex optimization algorithm run at inference time with a deep network
- At inference time, feed two images to a network and read the result at the output: fast inference
- Training is an even more complex optimization problem, but runs at training time
- Optimization assumes a very specific motion model. The neural network does not
- Therefore, a neural network might do well even where the optimization algorithm doesn’t
Training Data and Loss

- Big question: How to annotate training data?
- Current best answer: computer graphics
- Sintel: http://sintel.is.tue.mpg.de
- Main limitation: Is graphics a good proxy for real video?
- Computer graphics is getting better and better
- Not hard to make good movies look worse!
- Loss: Discrepancy between true flow $\mathbf{v}(x)$ and computed flow $\mathbf{u}(x)$
- **End-Point Error (EPE):**
 \[
 \sqrt{\frac{1}{|\Omega|} \sum_{x \in \Omega} \| \mathbf{u}(x) - \mathbf{v}(x) \|^2}
 \]
Architectures: The Recognition Funnel

- A CNN used for classification looks like a funnel:
 - Image in, category out
 - Representation becomes more and more abstract
 - For flow, the output is image-like, so the funnel won’t work
Architectures: The Image-to-Image Hourglass

- However, abstraction is still useful

- Flow at low resolution may be coarse but less ambiguous
- First build an abstract view, then restore detail
Architecture Detail: FlowNet, 2015

- **Encoder (or contraction)**

- **Decoder (or expansion)**

- Note the gray *skip connections* to restore detail
How to Decode: Up-Convolution

• We don’t just want to upsample: Upsampling needs to be trainable
• *Up-convolution* is one way to upsample
• Best understood in the 1D case first
• Convolution with stride reduces resolution
• How to increase resolution instead?
Strided Convolution in Matrix Form

\[g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x) \]

- Example: \(f \in \mathbb{R}^{12} \), stride \(s = 2 \), “same” format
 \(k = [a, b, c, d, e] \)
- Then, \(g \in \mathbb{R}^6 \) and \(g = Kf \) with \(K \in \mathbb{R}^{6 \times 12} \)

\[
K = \begin{bmatrix}
 c & b & a \\
 e & d & c & b & a \\
 e & d & c & b & a \\
 e & d & c & b & a \\
 e & d & c & b & a \\
 e & d & c & b & a
\end{bmatrix}
\]
Up-Convolution

- The up-convolution corresponding to $\mathbf{g} = K\mathbf{f}$ is defined as $\varphi = K^T \mathbf{g}$, *not* the inverse of K
Rewrite Up-Convolution as a Convolution

- *Dilate* \mathbf{g} into $\mathbf{\gamma}$ with stride $s = 2$:
 $$(g_0, g_1, g_2, g_3, g_4, g_5) \rightarrow (g_0, 0, g_1, 0, g_2, 0, g_3, 0, g_4, 0, g_5, 0)$$

<table>
<thead>
<tr>
<th>γ_0</th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_3</th>
<th>γ_4</th>
<th>γ_5</th>
<th>γ_6</th>
<th>γ_7</th>
<th>γ_8</th>
<th>γ_9</th>
<th>γ_{10}</th>
<th>γ_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_0</td>
<td>g_1</td>
<td>g_2</td>
<td>g_3</td>
<td>g_4</td>
<td>g_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Square matrix
- Can fill new columns with anything we like
Up-Convolution as a Convolution

<table>
<thead>
<tr>
<th>γ_0</th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_3</th>
<th>γ_4</th>
<th>γ_5</th>
<th>γ_6</th>
<th>γ_7</th>
<th>γ_8</th>
<th>γ_9</th>
<th>γ_{10}</th>
<th>γ_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_0</td>
<td>0</td>
<td>g_1</td>
<td>0</td>
<td>g_2</td>
<td>0</td>
<td>g_3</td>
<td>0</td>
<td>g_4</td>
<td>0</td>
<td>g_5</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Up-convolution is the convolution of a diluted input with the reverse of the original kernel k, that is, with

$$\kappa(y) \overset{\text{def}}{=} k(p - 1 - y)$$

- Up-convolution can be written as follows:

$$\phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x - y)$$
Up-Convolution Summary

• To reduce resolution, convolve and then sample
• Efficiently, do convolution with stride:
 \[g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x) \]
• To increase resolution, dilute and then convolve
• Efficiently, do diluted convolution
 \[\phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x - y) \]
where \(\gamma(y) = \begin{cases} g\left(\frac{y}{s}\right) & \text{if } y \equiv 0 \\ 0 & \text{otherwise} \end{cases} \) for \(0 \leq y \leq sn \)
• More efficiently: \(\phi(x) = \sum_{y=0}^{p-1} \kappa(y) g\left(\frac{x-y}{s}\right) \)
FlowNet, 2015

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the correlation layer.

Figure 3. Refinement of the coarse feature maps to the high resolution. Networks consisting of contracting and expanding parts are trained as a whole using backpropagation.

Another approach is to create two separate, yet identical processing streams for the two images and to combine them on a higher level. This roughly resembles the standard matching approach when one first extracts feature vectors. However, given feature representations of two images together and feed them through a rather generic network architecture the network is constrained to first produce meaningful representations of the two images separately and then combine them on a higher level. This roughly resembles the standard matching approach when one first extracts feature vectors and then combines them on a higher level. This roughly resembles the standard matching approach when one first extracts feature vectors and then combines them on a higher level.

Demos at https://www.youtube.com/watch?v=JSzUdVBmQP4
Unsupervised Training?

- Loss based on End-Point Error: \(\| u(x) - v(x) \|^2 \)
- Requires supervision \(v \)
- Loss based on Photometric Error + Regularization Term:
 \[[g(x + u(x)) - f(x)]^2 + \lambda \left\| \frac{\partial u}{\partial x^T} \right\|^2 \]
- Only \(f, g \) are needed
- Issue: Correct flow implies small loss, but the converse is not necessarily true, mainly because of the aperture problem
- Works, but not as well
- However, we can bring massive amounts of data to bear
Architectures for Image Segmentation

- Overall architecture is still an encoder-decoder
- Input: A single $h \times w$ image
- Output: An $h \times w \times K$ array of label scores for K classes
 \[p(r, c, k) > 0 \quad \text{and} \quad \sum_{k=0}^{K-1} p(r, c, k) = 1 \]
- When $K = 2$ only output $p(r, c, 1)$, called a heat map

Loss and Class Imbalance

- Cross-entropy loss is used at every pixel
- Average over image for a per-image loss
- *Class imbalance*: Distribution of training samples is uneven
- Example: segment buildings in sparsely populated areas

- Trivial classifier achieves low risk, high accuracy
- General issue for classification, not only segmentation
The Focal Loss

- Cross entropy: $\ell_{xe}(y, p) = -\log p_y$
- Focal loss: $\ell_f(y, p) = \alpha_y (1 - p_y)^\gamma \ell_{xe}(y, p)$
- Balance classes: $\alpha_k = \frac{1/n_k}{\sum_{j=0}^{K-1} 1/n_j}$
- $(1 - p_y)^\gamma$ is decreasing and convex when $\text{gamma} > 1$
Focal Loss and Hard Examples

- Convex term \((1 - p_y)^\gamma\) emphasizes hard examples
- Hard example: Misclassified or low-margin
- The trivial classifier misclassifies all rare samples
- Many samples in the more populated classes are likely to have a high margin
- Focal loss avoids trivial predictors