
Deep Networks for
Image-to-Image Prediction

COMPSCI 527 — Computer Vision

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 1 / 23

Outline

1 Image-to Image Prediction

2 Motion Estimation
Classical Approaches
Methods based on Neural Networks
FlowNet, 2015
Unsupervised Training?

3 Image Segmentation
Architecture
Loss Functions

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 2 / 23

Image-to Image Prediction

Image-to Image Prediction
• Recognition: 1 image→ K label scores (funnel)
• Motion estimation: 2 images→ 2 images
• Image segmentation: 1 image→ K score images

(K soft-max scores at every pixel)

www.irisa.fr/texmex/people/jain sthalles.github.io/deep_segmentation_network/

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 3 / 23

www.irisa.fr/texmex/people/jain
sthalles.github.io/deep_segmentation_network/

Image-to Image Prediction

Architecture of Image-to Image Predictors
• The output is as large as the input
• Retinotopic output: values map to pixel locations
• The funnel-like architecture cannot be used
• An hourglass architecture is used instead

FlowNet: Learning Optical Flow with Convolutional Networks

Alexey Dosovitskiy∗, Philipp Fischer†∗, Eddy Ilg∗, Philip Häusser, Caner Hazırbaş, Vladimir Golkov†

University of Freiburg Technical University of Munich
{fischer,dosovits,ilg}@cs.uni-freiburg.de, {haeusser,hazirbas,golkov}@cs.tum.edu

Patrick van der Smagt
Technical University of Munich

smagt@brml.org

Daniel Cremers
Technical University of Munich

cremers@tum.de

Thomas Brox
University of Freiburg

brox@cs.uni-freiburg.de

Abstract

Convolutional neural networks (CNNs) have recently
been very successful in a variety of computer vision tasks,
especially on those linked to recognition. Optical flow esti-
mation has not been among the tasks CNNs succeeded at. In
this paper we construct CNNs which are capable of solving
the optical flow estimation problem as a supervised learning
task. We propose and compare two architectures: a generic
architecture and another one including a layer that cor-
relates feature vectors at different image locations. Since
existing ground truth data sets are not sufficiently large to
train a CNN, we generate a large synthetic Flying Chairs
dataset. We show that networks trained on this unrealistic
data still generalize very well to existing datasets such as
Sintel and KITTI, achieving competitive accuracy at frame
rates of 5 to 10 fps.

1. Introduction
Convolutional neural networks have become the method

of choice in many fields of computer vision. They are clas-
sically applied to classification [25, 24], but recently pre-
sented architectures also allow for per-pixel predictions like
semantic segmentation [28] or depth estimation from single
images [10]. In this paper, we propose training CNNs end-
to-end to learn predicting the optical flow field from a pair
of images.

While optical flow estimation needs precise per-pixel lo-
calization, it also requires finding correspondences between
two input images. This involves not only learning image
feature representations, but also learning to match them at
different locations in the two images. In this respect, optical
flow estimation fundamentally differs from previous appli-
cations of CNNs.

∗These authors contributed equally
†Supported by the Deutsche Telekom Stiftung

Figure 1. We present neural networks which learn to estimate op-
tical flow, being trained end-to-end. The information is first spa-
tially compressed in a contractive part of the network and then
refined in an expanding part.

Since it was not clear whether this task could be solved
with a standard CNN architecture, we additionally devel-
oped an architecture with a correlation layer that explicitly
provides matching capabilities. This architecture is trained
end-to-end. The idea is to exploit the ability of convolu-
tional networks to learn strong features at multiple levels of
scale and abstraction and to help it with finding the actual
correspondences based on these features. The layers on top
of the correlation layer learn how to predict flow from these
matches. Surprisingly, helping the network this way is not
necessary and even the raw network can learn to predict op-
tical flow with competitive accuracy.

Training a network to predict generic optical flow re-
quires a sufficiently large training set. Although data aug-
mentation does help, the existing optical flow datasets are
still too small to train a network on par with state of the art.
Getting optical flow ground truth for realistic video material
is known to be extremely difficult [7]. Trading in realism

12758

(image from Dosovitskiy et al., FlowNet, 2015)

• A. k. a. contraction-expansion, encoder-decoder, . . .
• Let’s see image motion estimation first,

then image segmentation
COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 4 / 23

Motion Estimation Classical Approaches

Classical Approaches to Motion Estimation

• For decades, global methods were cast as optimization
problems to be solved at inference time
• Roughly: Find a flow field u(x) such that´

[g(x + u(x))− f (x)]2 dx + λ
´ ∥∥ ∂u

∂xT

∥∥2 dx is small
• The resulting normal equation is discretized, and leads to a

large, linear system in the unknowns u(x), one 2-vector per
pixel
• The flow is not smooth at motion boundaries, various

techniques have been proposed to improve results there
• However, these methods seem to work fairly well, see
https://people.csail.mit.edu/celiu/OpticalFlow/

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 5 / 23

https://people.csail.mit.edu/celiu/OpticalFlow/

Motion Estimation Methods based on Neural Networks

Why Use Neural Networks?
• A method based on neural networks needs many examples
(x, y) = ((f ,g),u)

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 6 / 23

Motion Estimation Methods based on Neural Networks

Why Use Neural Networks?
• Annotation is difficult: Hundreds of thousands or millions of

flow vectors per example
• How do we know the flow at every pixel anyway?
• So why bother with deep learning?
• Replace a complex optimization algorithm run at inference

time with a deep network
• At inference time, feed two images to a network and read

the result at the output: fast inference
• Training is an even more complex optimization problem, but

runs at training time
• Optimization assumes a very specific motion model. The

neural network does not
• Therefore, a neural network might do well even where the

optimization algorithm doesn’t
COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 7 / 23

Motion Estimation Methods based on Neural Networks

Training Data and Loss

• Big question: How to annotate training data?
• Current best answer: computer graphics
• Sintel: http://sintel.is.tue.mpg.de
• Main limitation: Is graphics a good proxy for real video?
• Computer graphics is getting better and better
• Not hard to make good movies look worse!
• Loss: Discrepancy between true flow v(x) and computed

flow u(x)

• End-Point Error (EPE):
√

1
|Ω|
∑

x∈Ω ‖u(x)− v(x)‖2

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 8 / 23

http://sintel.is.tue.mpg.de

Motion Estimation Methods based on Neural Networks

Architectures: The Recognition Funnel

• A CNN used for classification looks like a funnel:

• Image in, category out
• Representation becomes more and more abstract
• For flow, the output is image-like, so the funnel won’t work

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 9 / 23

Motion Estimation Methods based on Neural Networks

Architectures: The Image-to-Image Hourglass
• However, abstraction is still useful

• Flow at low resolution may be coarse but less ambiguous
• First build an abstract view, then restore detail

FlowNet: Learning Optical Flow with Convolutional Networks

Alexey Dosovitskiy∗, Philipp Fischer†∗, Eddy Ilg∗, Philip Häusser, Caner Hazırbaş, Vladimir Golkov†

University of Freiburg Technical University of Munich
{fischer,dosovits,ilg}@cs.uni-freiburg.de, {haeusser,hazirbas,golkov}@cs.tum.edu

Patrick van der Smagt
Technical University of Munich

smagt@brml.org

Daniel Cremers
Technical University of Munich

cremers@tum.de

Thomas Brox
University of Freiburg

brox@cs.uni-freiburg.de

Abstract

Convolutional neural networks (CNNs) have recently
been very successful in a variety of computer vision tasks,
especially on those linked to recognition. Optical flow esti-
mation has not been among the tasks CNNs succeeded at. In
this paper we construct CNNs which are capable of solving
the optical flow estimation problem as a supervised learning
task. We propose and compare two architectures: a generic
architecture and another one including a layer that cor-
relates feature vectors at different image locations. Since
existing ground truth data sets are not sufficiently large to
train a CNN, we generate a large synthetic Flying Chairs
dataset. We show that networks trained on this unrealistic
data still generalize very well to existing datasets such as
Sintel and KITTI, achieving competitive accuracy at frame
rates of 5 to 10 fps.

1. Introduction
Convolutional neural networks have become the method

of choice in many fields of computer vision. They are clas-
sically applied to classification [25, 24], but recently pre-
sented architectures also allow for per-pixel predictions like
semantic segmentation [28] or depth estimation from single
images [10]. In this paper, we propose training CNNs end-
to-end to learn predicting the optical flow field from a pair
of images.

While optical flow estimation needs precise per-pixel lo-
calization, it also requires finding correspondences between
two input images. This involves not only learning image
feature representations, but also learning to match them at
different locations in the two images. In this respect, optical
flow estimation fundamentally differs from previous appli-
cations of CNNs.

∗These authors contributed equally
†Supported by the Deutsche Telekom Stiftung

Figure 1. We present neural networks which learn to estimate op-
tical flow, being trained end-to-end. The information is first spa-
tially compressed in a contractive part of the network and then
refined in an expanding part.

Since it was not clear whether this task could be solved
with a standard CNN architecture, we additionally devel-
oped an architecture with a correlation layer that explicitly
provides matching capabilities. This architecture is trained
end-to-end. The idea is to exploit the ability of convolu-
tional networks to learn strong features at multiple levels of
scale and abstraction and to help it with finding the actual
correspondences based on these features. The layers on top
of the correlation layer learn how to predict flow from these
matches. Surprisingly, helping the network this way is not
necessary and even the raw network can learn to predict op-
tical flow with competitive accuracy.

Training a network to predict generic optical flow re-
quires a sufficiently large training set. Although data aug-
mentation does help, the existing optical flow datasets are
still too small to train a network on par with state of the art.
Getting optical flow ground truth for realistic video material
is known to be extremely difficult [7]. Trading in realism

12758

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 10 / 23

Motion Estimation FlowNet, 2015

Architecture Detail: FlowNet, 2015
• Encoder (or contraction)

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the
expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training
computationally feasible and, more fundamentally, to allow
aggregation of information over large areas of the input im-
ages. But pooling results in reduced resolution, so in order
to provide dense per-pixel predictions we need to refine the
coarse pooled representation. To this end our networks con-
tain an expanding part which intelligently refines the flow to
high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.
Architectures we use are depicted in Figures 2 and 3. We
now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input
images together and feed them through a rather generic net-
work, allowing the network to decide itself how to process
the image pair to extract the motion information. This is il-
lustrated in Fig. 2 (top). We call this architecture consisting
only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical
processing streams for the two images and to combine them
at a later stage as shown in Fig. 2 (bottom). With this ar-
chitecture the network is constrained to first produce mean-
ingful representations of the two images separately and then
combine them on a higher level. This roughly resembles the
standard matching approach when one first extracts features
from patches of both images and then compares those fea-
ture vectors. However, given feature representations of two
images, how would the network find correspondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer

2760

• Decoder (or expansion)
Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the
expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training
computationally feasible and, more fundamentally, to allow
aggregation of information over large areas of the input im-
ages. But pooling results in reduced resolution, so in order
to provide dense per-pixel predictions we need to refine the
coarse pooled representation. To this end our networks con-
tain an expanding part which intelligently refines the flow to
high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.
Architectures we use are depicted in Figures 2 and 3. We
now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input
images together and feed them through a rather generic net-
work, allowing the network to decide itself how to process
the image pair to extract the motion information. This is il-
lustrated in Fig. 2 (top). We call this architecture consisting
only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical
processing streams for the two images and to combine them
at a later stage as shown in Fig. 2 (bottom). With this ar-
chitecture the network is constrained to first produce mean-
ingful representations of the two images separately and then
combine them on a higher level. This roughly resembles the
standard matching approach when one first extracts features
from patches of both images and then compares those fea-
ture vectors. However, given feature representations of two
images, how would the network find correspondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer

2760

• Note the gray skip connections to restore detail

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 11 / 23

Motion Estimation FlowNet, 2015

How to Decode: Up-Convolution

• We don’t just want to upsample: Upsampling needs to be
trainable
• Up-convolution is one way to upsample
• Best understood in the 1D case first
• Convolution with stride reduces resolution
• How to increase resolution instead?

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 12 / 23

Motion Estimation FlowNet, 2015

Strided Convolution in Matrix Form

g(y) =
∑p−1

x=0 k(x)f (sy − x)
• Example: f ∈ R12, stride s = 2, “same” format

k = [a,b, c,d ,e]
• Then, g ∈ R6 and g = K f with K ∈ R6×12

K =

c b a
e d c b a

e d c b a
e d c b a

e d c b a
e d c b

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 13 / 23

Motion Estimation FlowNet, 2015

Up-Convolution
• The up-convolution corresponding to g = K f is defined as
ϕ = K T g , not the inverse of K

g0 g1 g2 g3 g4 g5

c e
b d
a c e

b d
a c e

b d
a c e

b d
a c e

b d
a c

b

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 14 / 23

Motion Estimation FlowNet, 2015

Rewrite Up-Convolution as a Convolution

• Dilute g into γ with stride s = 2:
(g0,g1,g2,g3,g4,g5)→ (g0,0,g1,0,g2,0,g3,0,g4,0,g5,0)

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11
g0 0 g1 0 g2 0 g3 0 g4 0 g5 0
c e
b d
a c e

b d
a c e

b d
a c e

b d
a c e

b d
a c

b

• Square matrix
• Can fill new columns with anything we like

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 15 / 23

Motion Estimation FlowNet, 2015

Up-Convolution as a Convolution
γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11
g0 0 g1 0 g2 0 g3 0 g4 0 g5 0
c d e
b c d e
a b c d e

a b c d e
a b c d e

a b c d e
a b c d e

a b c d e
a b c d e

a b c d e
a b c d

a b c

• Up-convolution is the convolution of a diluted input with the
reverse of the original kernel k , that is, with

κ(y) def
= k(p − 1− y)

• Up-convolution can be written as follows:
φ(x) =

∑p−1
y=0 κ(y)γ(x − y)

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 16 / 23

Motion Estimation FlowNet, 2015

Up-Convolution Summary

• To reduce resolution, convolve and then sample
• Efficiently, do convolution with stride:

g(y) =
∑p−1

x=0 k(x)f (sy − x)
• To increase resolution, dilute and then convolve
• Efficiently, do diluted convolution
φ(x) =

∑p−1
y=0 κ(y)γ(x − y)

where γ(y) =
{

g
(y

s

)
if y s

= 0
0 otherwise

for 0 ≤ y ≤ sn

• More efficiently: φ(x) =
∑p−1

y s
=x , y=0

κ(y) g
(x−y

s

)

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 17 / 23

Motion Estimation FlowNet, 2015

FlowNet, 2015

FlowNet: Learning Optical Flow with Convolutional Networks

Alexey Dosovitskiy∗, Philipp Fischer†∗, Eddy Ilg∗, Philip Häusser, Caner Hazırbaş, Vladimir Golkov†

University of Freiburg Technical University of Munich
{fischer,dosovits,ilg}@cs.uni-freiburg.de, {haeusser,hazirbas,golkov}@cs.tum.edu

Patrick van der Smagt
Technical University of Munich

smagt@brml.org

Daniel Cremers
Technical University of Munich

cremers@tum.de

Thomas Brox
University of Freiburg

brox@cs.uni-freiburg.de

Abstract

Convolutional neural networks (CNNs) have recently
been very successful in a variety of computer vision tasks,
especially on those linked to recognition. Optical flow esti-
mation has not been among the tasks CNNs succeeded at. In
this paper we construct CNNs which are capable of solving
the optical flow estimation problem as a supervised learning
task. We propose and compare two architectures: a generic
architecture and another one including a layer that cor-
relates feature vectors at different image locations. Since
existing ground truth data sets are not sufficiently large to
train a CNN, we generate a large synthetic Flying Chairs
dataset. We show that networks trained on this unrealistic
data still generalize very well to existing datasets such as
Sintel and KITTI, achieving competitive accuracy at frame
rates of 5 to 10 fps.

1. Introduction
Convolutional neural networks have become the method

of choice in many fields of computer vision. They are clas-
sically applied to classification [25, 24], but recently pre-
sented architectures also allow for per-pixel predictions like
semantic segmentation [28] or depth estimation from single
images [10]. In this paper, we propose training CNNs end-
to-end to learn predicting the optical flow field from a pair
of images.

While optical flow estimation needs precise per-pixel lo-
calization, it also requires finding correspondences between
two input images. This involves not only learning image
feature representations, but also learning to match them at
different locations in the two images. In this respect, optical
flow estimation fundamentally differs from previous appli-
cations of CNNs.

∗These authors contributed equally
†Supported by the Deutsche Telekom Stiftung

Figure 1. We present neural networks which learn to estimate op-
tical flow, being trained end-to-end. The information is first spa-
tially compressed in a contractive part of the network and then
refined in an expanding part.

Since it was not clear whether this task could be solved
with a standard CNN architecture, we additionally devel-
oped an architecture with a correlation layer that explicitly
provides matching capabilities. This architecture is trained
end-to-end. The idea is to exploit the ability of convolu-
tional networks to learn strong features at multiple levels of
scale and abstraction and to help it with finding the actual
correspondences based on these features. The layers on top
of the correlation layer learn how to predict flow from these
matches. Surprisingly, helping the network this way is not
necessary and even the raw network can learn to predict op-
tical flow with competitive accuracy.

Training a network to predict generic optical flow re-
quires a sufficiently large training set. Although data aug-
mentation does help, the existing optical flow datasets are
still too small to train a network on par with state of the art.
Getting optical flow ground truth for realistic video material
is known to be extremely difficult [7]. Trading in realism

12758

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the
expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training
computationally feasible and, more fundamentally, to allow
aggregation of information over large areas of the input im-
ages. But pooling results in reduced resolution, so in order
to provide dense per-pixel predictions we need to refine the
coarse pooled representation. To this end our networks con-
tain an expanding part which intelligently refines the flow to
high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.
Architectures we use are depicted in Figures 2 and 3. We
now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input
images together and feed them through a rather generic net-
work, allowing the network to decide itself how to process
the image pair to extract the motion information. This is il-
lustrated in Fig. 2 (top). We call this architecture consisting
only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical
processing streams for the two images and to combine them
at a later stage as shown in Fig. 2 (bottom). With this ar-
chitecture the network is constrained to first produce mean-
ingful representations of the two images separately and then
combine them on a higher level. This roughly resembles the
standard matching approach when one first extracts features
from patches of both images and then compares those fea-
ture vectors. However, given feature representations of two
images, how would the network find correspondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer

2760
Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the
expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training
computationally feasible and, more fundamentally, to allow
aggregation of information over large areas of the input im-
ages. But pooling results in reduced resolution, so in order
to provide dense per-pixel predictions we need to refine the
coarse pooled representation. To this end our networks con-
tain an expanding part which intelligently refines the flow to
high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.
Architectures we use are depicted in Figures 2 and 3. We
now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input
images together and feed them through a rather generic net-
work, allowing the network to decide itself how to process
the image pair to extract the motion information. This is il-
lustrated in Fig. 2 (top). We call this architecture consisting
only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical
processing streams for the two images and to combine them
at a later stage as shown in Fig. 2 (bottom). With this ar-
chitecture the network is constrained to first produce mean-
ingful representations of the two images separately and then
combine them on a higher level. This roughly resembles the
standard matching approach when one first extracts features
from patches of both images and then compares those fea-
ture vectors. However, given feature representations of two
images, how would the network find correspondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer

2760

Demos at https://www.youtube.com/watch?v=JSzUdVBmQP4

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 18 / 23

https://www.youtube.com/watch?v=JSzUdVBmQP4

Motion Estimation Unsupervised Training?

Unsupervised Training?

• Loss based on End-Point Error: ‖u(x)− v(x)‖2

• Requires supervision v
• Loss based on Photometric Error + Regularization Term:
[g(x + u(x))− f (x)]2 + λ

∥∥ ∂u
∂xT

∥∥2

• Only f ,g are needed
• Issue: Correct flow implies small loss, but the converse is

not necessarily true, mainly because of the aperture
problem
• Works, but not as well
• However, we can bring massive amounts of data to bear

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 19 / 23

Image Segmentation Architecture

Architectures for Image Segmentation

https://mi.eng.cam.ac.uk/projects/segnet/ (2015)

• Overall architecture is still an encoder-decoder
• Input: A single h × w image
• Output: An h × w × K array of label scores for K classes

p(r , c, k) > 0 and
∑K−1

k=0 p(r , c, k) = 1
• When K = 2 only output p(r , c,1), called a heat map

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 20 / 23

https://mi.eng.cam.ac.uk/projects/segnet/

Image Segmentation Loss Functions

Loss and Class Imbalance
• Cross-entropy loss is used at every pixel
• Average over image for a per-image loss
• Class imbalance: Distribution of training samples is uneven
• Example: segment buildings in sparsely populated areas

https://www.supermap.com/en/html/SuperMap_GIS_news534.html

• Trivial classifier achieves low risk, high accuracy
• General issue for classification, not only segmentation

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 21 / 23

https://www.supermap.com/en/html/SuperMap_GIS_news534.html

Image Segmentation Loss Functions

The Focal Loss
• Cross entropy: `xe(y ,p) = − log py

• Focal loss: `f(y ,p) = αy(1− py)
γ`xe(y ,p)

• Balance classes: αk = 1/nk∑K−1
j=0 1/nj

• (1− py)
γ is decreasing and convex when gamma > 1

0.0 0.2 0.4 0.6 0.8 1.0
py

0.0

0.2

0.4

0.6

0.8

1.0

(1
p y

)

= 1.0
= 1.5
= 2.0
= 3.0

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 22 / 23

Image Segmentation Loss Functions

Focal Loss and Hard Examples

0.0 0.2 0.4 0.6 0.8 1.0
py

0.0

0.2

0.4

0.6

0.8

1.0

(1
p y

)

= 1.0
= 1.5
= 2.0
= 3.0

• Convex term (1− py)
γ emphasizes hard examples

• Hard example: Misclassified or low-margin
• The trivial classifier misclassifies all rare samples
• Many samples in the more populated classes are likely to

have a high margin
• Focal loss avoids trivial predictors

COMPSCI 527 — Computer Vision Deep Networks forImage-to-Image Prediction 23 / 23

	Image-to Image Prediction
	Motion Estimation
	Classical Approaches
	Methods based on Neural Networks
	FlowNet, 2015
	Unsupervised Training?

	Image Segmentation
	Architecture
	Loss Functions

