Rigid Geometric Transformations and the Pinhole Camera Model

COMPSCI 527 — Computer Vision

Outline

Coordinates and Vector Operators Orthogonal Projection Cross Product Triple Product

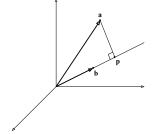
Rigid Transformations Translations Rotations Coordinate Transformations

3 The Pinhole Camera

Rigid Transformations

- 3D reconstruction: Given corresponding points in two (or more) images taken from different viewpoints, find the relative pose of the two cameras and 3D coordinates of the world points
- The relative motion between a camera and an otherwise static scene is a rigid transformation: rotation + translation
- Reconstruction techniques also require knowing about othogonal projection, cross product, triple product
- All vectors are in \mathbb{R}^3

Orthogonal Projection



- Definition of projection of a onto b ≠ 0: the point p on the line through b that is closest to a
- **p** is on the line through **b**: **p** = x**b** for some x
- **p** is closest to **a** when (**a**, **p**) is orthogonal to **b**:

$$\mathbf{b}^T (\mathbf{a} - x\mathbf{b}) = 0$$
, which yields $x = \frac{\mathbf{b}^T \mathbf{a}}{\mathbf{b}^T \mathbf{b}}$ so that

$$\mathbf{p} = x\mathbf{b} = \mathbf{b} x = \frac{\mathbf{b}\mathbf{b}^T}{\mathbf{b}^T\mathbf{b}} \mathbf{a}$$

The Orthogonal-Projection Matrix

- $\mathbf{p} = P_{\mathbf{b}} \mathbf{a}$ where $P_{\mathbf{b}} = \frac{\mathbf{b} \mathbf{b}^T}{\mathbf{b}^T \mathbf{b}}$
- $P_{\mathbf{b}}$ is rank 1, symmetric, and idempotent: $P_{\mathbf{b}}^{n} = P_{\mathbf{b}}$ for n > 0

• Norm squared of **p**: $\|\mathbf{p}\|^2 =$

- When ||**b**|| = 1,
- Note: Orthogonal projection is not camera projection

3

く ヨン・ キヨン・

The Cross Product

Geometry: The cross product of two three-dimensional vectors **a** and **b** is a vector **c** orthogonal to both **a** and **b**, oriented so that the triple **a**, **b**, **c** is right-handed, and with magnitude

$$\|\mathbf{c}\| = \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

where θ is the smaller angle between **a** and **b**

- The magnitude of ${\bm a} \times {\bm b}$ is the area of a parallelogram with sides ${\bm a}$ and ${\bm b}$
- Algebra: $\mathbf{c} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$

 $=(a_{y}b_{z}-a_{z}b_{y}\,,\ a_{z}b_{x}-a_{x}b_{z}\,,\ a_{x}b_{y}-a_{y}b_{x})^{T}$

• Easy to check that $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

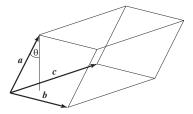
The Cross-Product Matrix

- $\mathbf{c} = (a_y b_z a_z b_y, a_z b_x a_x b_z, a_x b_y a_y b_x)^T$ is linear in \mathbf{b}
- Therefore, there exists a 3 \times 3 matrix $[\boldsymbol{a}]_{\times}$ such that

・ 同) (ヨ) (ヨ) …

The Triple Product

- Definition: det([$\mathbf{a}, \mathbf{b}, \mathbf{c}$]) = $\mathbf{a}^{T}(\mathbf{b} \times \mathbf{c})$
 - $=a_x(b_yc_z-b_zc_y)-a_y(b_xc_z-b_zc_x)+a_z(b_xc_y-b_yc_x)$
- Signed volume of parallelepiped



• Easy to check: $\mathbf{a}^T(\mathbf{b} \times \mathbf{c}) = \mathbf{b}^T(\mathbf{c} \times \mathbf{a}) = \mathbf{c}^T(\mathbf{a} \times \mathbf{b}) = -\mathbf{a}^T(\mathbf{c} \times \mathbf{b}) = -\mathbf{c}^T(\mathbf{b} \times \mathbf{a}) = -\mathbf{b}^T(\mathbf{a} \times \mathbf{c})$

< ロ > < 同 > < 回 > < 回 > .

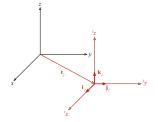
Multiple Reference Systems

- If we associate a reference system to a camera and the camera moves, or we consider multiple cameras, or we consider one camera and the world, we have multiple reference systems
- Point coordinates are x, y, z
- Left superscript denotes which reference system coordinates are expressed in: ¹y
- Subscripts denote which point or reference system we are talking about: x₂
- ²y₃ is the y coordinate of point 3 in reference system 2

Multiple Reference Systems

- A zero left superscript can be omitted: ${}^{0}z = z$
- The origin of a reference system is t (for "translation")
- We always have ${}^{i}\mathbf{t}_{i} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
- If i, j, k are the unit points of a reference system, we always have
 [ⁱi_i ⁱj_i ⁱk_i] = I,
 the 3 × 3 identity matrix

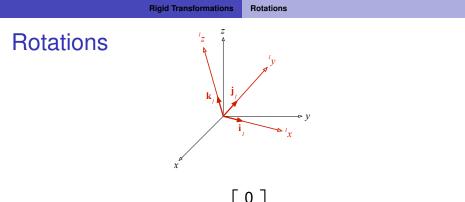
Translations



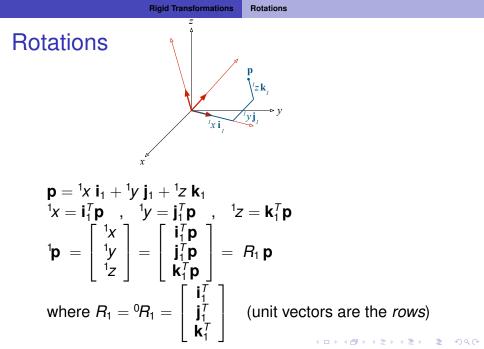
• No rotation:
$${}^{0}R_{1} = R_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Both systems right-handed
- ⁰t₁ = t₁ is the origin of reference system 1 expressed in reference system 0
- Given $\mathbf{p} = {}^{0}\mathbf{p}$, we have ${}^{1}\mathbf{p} = {}^{0}\mathbf{p} {}^{0}\mathbf{t}_{1} = \mathbf{p} \mathbf{t}_{1}$

A (1) > (1) > (2)



- No translation: ${}^{0}\mathbf{t}_{1} = \mathbf{t}_{1} = \left| \begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right|$
- Both systems right-handed
- i₁, j₁, k₁ are the unit vectors of reference system 1 expressed in reference system 0
- Given $\mathbf{p} = {}^{0}\mathbf{p}$, what is ${}^{1}\mathbf{p}$?

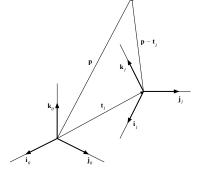


Rotations in General

- More generally, ${}^{b}\mathbf{p} = {}^{a}R_{b}{}^{a}\mathbf{p}$ where ${}^{a}R_{b} = \begin{bmatrix} {}^{a}\mathbf{I}_{b}{}^{i}\\ {}^{a}\mathbf{j}_{b}{}^{T}\\ {}^{a}\mathbf{k}_{c}{}^{T} \end{bmatrix}$
- Rotations are reversible, so there exists ${}^{b}R_{a} = {}^{a}R_{b}^{-1}$
- ${}^{b}\!R_{a} = {}^{a}\!R_{b}^{T}$ because ${}^{a}\!R_{b}$ is orthogonal
- Cross-product is covariant with rotations:
 (Pa) × (Pb) = P(a × b)

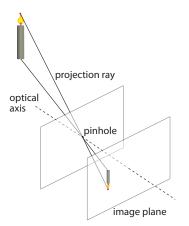
 $(R\mathbf{a}) \times (R\mathbf{b}) = R(\mathbf{a} \times \mathbf{b})$

Coordinate Transformation



- A.k.a. rigid transformation
- First translate, then rotate: ${}^{1}\mathbf{p} = R_{1}(\mathbf{p} \mathbf{t}_{1})$
- Inverse: $p = R_1^T {}^1p + t_1$
- Generally, if ${}^{b}\mathbf{p} = {}^{a}\!R_{b}({}^{a}\mathbf{p} {}^{a}\mathbf{t}_{b})$ then ${}^{a}\mathbf{p} = {}^{b}\!R_{a}({}^{b}\mathbf{p} {}^{b}\mathbf{t}_{a})$ where ${}^{b}\!R_{a} = {}^{a}\!R_{b}^{T}$ and ${}^{b}\mathbf{t}_{a} = -{}^{a}\!R_{b}{}^{a}\mathbf{t}_{b}$

The Pinhole Camera



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

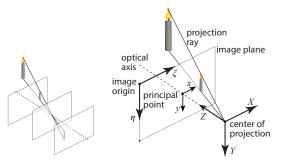
Putting the Image Plane in Front?



э

ヘロン 人間 とくほ とくほとう

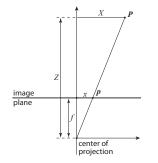
In Math, We Can



- Camera reference system (X, Y, Z) is right-handed, Z toward scene
- Distance btw center of projection and principal point: focal distance f
- Canonical image reference system (x, y) has origin at principal point
- Pixel image reference system (ξ, η) has origin at top left of sensor

•
$$\xi = s_x x + \xi_0$$
 and $\eta = s_y y + \eta_0$ (s_x, s_y in pixels/mm)

The Projection Equations



æ