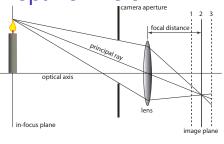
Real Cameras and their Calibration

COMPSCI 527 — Computer Vision

Outline

- Real Cameras
 Depth of Field
 Distortion
- 2 Camera Calibration A Camera Model Parameter Optimization Lab Setup and Imaging

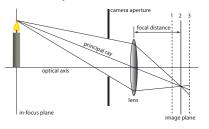
Depth of Field



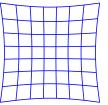
- Focal *length*: focal *distance* when an object at ∞ is in focus
- Focal length is a lens property
- Focal distance can be changed by rotating the focusing ring
- Nothing to do with zoom, which changes focal length
- Alas, f is often used for either focal distance or focal length

Changing Depth of Field

- Aperture: diameter of the hole in front of the lens
- Measured in *stops*, or *f-numbers* $n = \frac{f}{a}$ (*a* is aperture diameter, *f* is focal length)
- Area (light flux) is proportional to square of diameter
- Small aperture (big f-number) ⇒ great depth of field
- A shallow depth of field is sometimes desirable



Lens Distortion



pincushion

barrel

Camera Calibration

- Cameras have intrinsic parameters: focal distance, pixel size, principal point, lens distortion parameters
- ... and extrinsic parameters: Rotation, translation relative to some world reference system
- Camera calibration is a combination of lab measurements and algorithms aimed at determining both types of parameters
- We do not calibrate for finite depth of field (stop down the aperture, flood the scene with light)

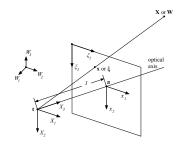
Calibration as Learning

- Many variants, the general idea is the same
- Looks very much like machine learning:
 - Make a parametric model of what a camera does: Inputs are world points W in world coordinates, outputs are image points ξ in image pixel coordinates ("predictor architecture")
 - 2 Collect a sufficiently large set T of input-output pairs $(\mathbf{W}_n, \boldsymbol{\xi}_n)$ ("training set")
 - 3 "Loss function" measures discrepancy between $\hat{\xi}_n$ predicted by model and ξ_n measured in image
 - $oldsymbol{0}$ Fit the parameters to T by numerical optimization ("training")
- We even have generalization requirements: The parameters should be correct for pairs $(\mathbf{W}, \boldsymbol{\xi})$ not in T
- We already know how to do 3, 4. Need to figure out 1, 2.

Camera Model

$$\mathbf{X} = R(\mathbf{W} - \mathbf{t})$$
 $\mathbf{x} = p(\mathbf{X}) = \frac{1}{X_3} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$
 $\mathbf{y} = d(\mathbf{x})$ (lens distortion)
 $\boldsymbol{\xi} = S\mathbf{y} + \boldsymbol{\pi}$
 $S = f \begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{y} \end{bmatrix}$

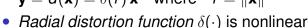
Can only determine products $f s_x$ and $f s_y$, not f, s_x, s_y individually



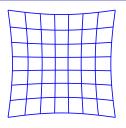
Lens Distortion Model

 Distortion is radial around the principal point:

$$\mathbf{y} = d(\mathbf{x}) = \delta(r) \mathbf{x}$$
 where $r = \|\mathbf{x}\|$



- Must be analytical everywhere (Maxwell). Implication:
 - Restrict to x axis: $\delta(r(\mathbf{x})) = \delta(|x|)$
 - Odd powers of |x| have a cusp at the origin
 - Therefore, $\delta(r) = 1 + k_1 r^2 + k_2 r^4 + \dots$ ($k_0 \neq 1$ can be folded into f)
- Large powers of r only affect peripheral areas and cannot be determined well
- Typically, $\delta(r) = 1 + k_1 r^2 + k_2 r^4$



Camera Parameters

$$\mathbf{X} = R(\mathbf{W} - \mathbf{t})$$

$$\mathbf{x} = \rho(\mathbf{X}) = \frac{1}{X_3} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{x} (1 + k_1 || \mathbf{x} ||^2 + k_2 || \mathbf{x} ||^4)$$

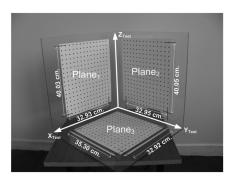
$$\boldsymbol{\xi} = S\mathbf{y} + \boldsymbol{\pi}$$

- Extrinsic parameters: R, t (6 degrees of freedom)
- Intrinsic parameters: π , $f s_x$, $f s_y$, k_1 , k_2 (6 numbers) $\xi = \mathbf{c}(\mathbf{W}; \mathbf{p})$ where $\mathbf{p} \in \mathbb{R}^{12}$

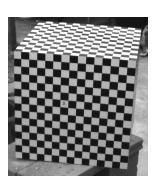
Data Fitting

- Collect input-output pairs $(\mathbf{W}_n, \boldsymbol{\xi}_n)$ for n = 1, ..., N $\hat{\boldsymbol{\xi}} = \mathbf{c}(\mathbf{W}; \mathbf{p}) \text{ where } \mathbf{p} \in \mathbb{R}^{12}$ $\mathbf{p}^* = \arg\min_{\mathbf{p}} e(\mathbf{p}) \quad \text{where} \quad e(\mathbf{p}) = \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{\xi}_n \mathbf{c}(\mathbf{W}_n; \mathbf{p})\|^2$
- e is nonlinear
- To initialize: clamp $k_1 = k_2 = 0$, solve a linear system
- Approximate because of clamping and because the residual is different from e(p)
- · Use any optimization algorithm to refine

Calibration Target

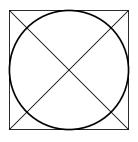


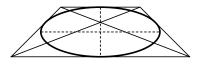
http://www.mdpi.com/1424-8220/9/6/4572/htm



Duke Computer Vision Lab

Circles are Problematic





Calibration Protocol Summary

- Place calibration target in front of camera (fill the image)
- Measure image coordinates (with software help?)
- Make a file with $(\mathbf{W}_n, \boldsymbol{\xi}_n)$ pairs
- Fit parameters by numerical optimization
- Redo if you touch the lens or the camera!

An Example for Distortion Only

