## Due date: February 17, 2022

Problem 1: [15 pts] Let $\triangle$ be a triangle in $\mathbb{R}^{2}$. For a point $x \in \mathbb{R}^{2}, \Delta+x$ is a translate of $\triangle$ (if $a, b, c$ are vertices of $\triangle$, then the vertices of $\triangle+x$ are $a+x, b+x, c+x$.) Let $S$ be a set of $n$ translates of $\Delta$. Let $U(S) \subseteq \mathbb{R}^{2}$ denote the union of triangles in $S$, i.e., the set of points that lie in at least one triangle of $S$. Each connected component of $U(S)$ is a polygon (with possible holes). The total number of vertices on $U(S)$ is known to be $O(n)$. Describe an $O\left(n \log ^{2} n\right)$-time algorithm to compute the boundary of the union of $\mathcal{S}$. (You can assume that once you have all the edges of a planar subdivision $\Pi$, one can compute a suitable representation of $\Pi$ in linear time.) (Hint: Describe a divide-and-conquer algorithm and use sweep-line at the merge step.)

Problem 2: [10 pts] Let $S$ be a set of (possibly intersecting) $m$ line segments in $\mathbb{R}^{2}$, and let $L$ be a set of $n$ lines in $\mathbb{R}^{2}$. Describe an $O\left(\left(m^{2}+n\right) \log n\right)$ algorithm to count the number of intersection points between $L$ and $S$. (Hint: Use duality and line sweep.)

Problem 3: [10 pts] Let $C_{1}$ and $C_{2}$ be two disjoint convex polygons, each with $n$ vertices. Assume that the vertices of each polygon are stored in counterclockwise direction in a height-balanced tree (e.g. red-black tree). Describe an $O(\log n)$-time algorithm to compute their outer tangents. (Hint: How does one determine which paths one should follow in the two trees to compute the upper tangent?)

Problem 4: [15 pts] Let $P \in \mathbb{R}^{2}$ be a set of $n$ points. The width of $P$ is the minimum width of a strip (region bounded by two parallel lines) that contains $P$.
(i) Show that the width of $P$ can be computed in $O(n \log n)$ time.
(ii) Extend (i) to compute the smallest area rectangle that contains $P$ in $O(n \log n)$ time.

