Due date: March 3, 2022

Problem 1: [15 pts] Let a circle $C \in \mathbb{R}^2$ have center *c* and radius *r*. The power pow(x, C) of a point $x \in \mathbb{R}^2$ with respect to circle *C* is defined as:

$$pow(x, C) := ||x - c||^2 - r^2.$$

The *power diagram* of a finite set of circles *S* is a decomposition of \mathbb{R}^2 into regions such that all points in the same region have the same nearest neighbor under the power distance. That is, a cell for a given $s \in S$ is defined as $\text{Pow}(s) \coloneqq \{x \in \mathbb{R}^2 \mid pow(x,s) \leq pow(x,t) \forall t \in S\}$.

- (i) Describe the bisector of two circles in the power diagram.
- (ii) Prove that the the power diagram has linear complexity.
- (iii) Descibe an $O(n \log n)$ algorithm to compute the power diagram of a set of circles *S*.

Problem 2: [10 pts] Let *S* be a set of *n* points in \mathbb{R}^2 , such that each point $p \in S$ has a positive weight w(p). We define the weighted distance of an arbitrary point $x \in \mathbb{R}^2$ from *p* to be d(x, p) := ||x - p||w(p). The weighted Voronoi cell of a point $p \in S$ is as usual defined as $Vor(p) := \{x \in \mathbb{R}^2 \mid d(x, p) \leq d(x, p') \forall p' \in S\}$. The resulting diagram is known as the *multiplicative weighted Voronoi diagram*.

- (i) Describe the bisector of two points in the multiplicative weighted Voronoi diagram.
- (ii) What is the complexity of the multiplicative weighted Voronoi diagram? Justify your answer.

Problem 3: [15 pts] A *k*-clustering of a set *P* of *n* points in the plane is a partitioning of *P* into *p* non-empty subsets $P_1, ..., P_k$. Define the distance *d* between any pair P_i, P_j of clusters to be the minimum distance between one point from P_i and one point from P_j , that is,

$$d(P_i, P_j) \coloneqq \min_{p \in P_i, q \in P_j} \|p - q\|.$$

We want to find a *k*-clustering (for given *k* and *P*) that maximizes the minimum distance between clusters.

- (i) Suppose the mimimum distance between clusters is achieved by points $p \in P_i$ and $q \in P_j$. Prove that pq is an edge of the Delaunay triangulation of P.
- (ii) Give an *O*(*n* log *n*) time algorithm to compute a *k*-clustering maximizing the minimum distance between clusters. (**Hint:** *Use a Union-Find data structure.*)

Problem 4: [10 pts] Let *S* be a set of *n* points in \mathbb{R}^d , and let *k* be an integer with $1 \le k \le {n \choose 2}$. Suppose we order the distances between pairs of points of *S* in non-decreasing order. We want to compute the pair of points that realize the k^{th} smallest distance, δ . For a parameter $\varepsilon > 0$, a pair (x, y) of *S* is an ε -approximate k^{th} closest pair if $(1 - \varepsilon)\delta \le ||x - y|| \le (1 + \varepsilon)\delta$. Show that an ε -approximate k^{th} closest pair can be computed in $O(n\varepsilon^{-d} \log n)$ time. (Hint: *Compute a WSPD of S*.)