Due date: April 11, 2022

Problem 1: [10 pts] Let L be a set of n lines in \mathbb{R}^2. For each cell C in the arrangement $A(L)$, let $|C|$ denote the complexity of the cell. Prove that

$$\sum_{C \in A(L)} |C|^2 = O(n^2).$$

(Hint: Use the zone theorem.)

Problem 2: [10 pts] Let C be a convex m-gon, and let S be a set of n line segments in \mathbb{R}^2 whose endpoints lie on C. Give an $O(m + n \log n)$-time algorithm to count the number of intersection points of segments in S. (Hint: Traverse the boundary of C.)

Problem 3: [20 pts] Let S be a set of n line segments in \mathbb{R}^2. Describe an $O(n^{4/3} \log^{O(1)} n)$-time algorithm to count the number of intersection points of segments in S. (Hint: Construct a geometric cutting Ξ of lines supporting the triangles. Count the number of intersection points within each triangle $\Delta \in \Xi$ using the first problem and the one from the previous assignment.)

Problem 4: [10 pts] Let S be a set of points in \mathbb{R}^d. Show that the randomized LP algorithm discussed in the class can be extended to compute the smallest ball containing S in $O(n)$ expected time.