is for ...
CompSci 101 Q Istor

Dictionaries Practice

* QR code %‘:E
def fastcount (words): Yesenia Velasco * Black and white and read all over _1-}&'.'5':&
d =1 Susan Rodger * Quicksort []74:;
for ".:fl‘: \'.::rg?: March 23 2023 Sort of choice before Timsort?
dlw] += 1 arch 23, - QWERTY
else! * When bad ideas persist
dlw] =1

return sorted(d.items())

3/23/23 Compsci 101, Spring 2023 1 3/23/23 Compsci 101, Spring 2023

Christine Alvarado Announcements

e Assignment 4 GuessWord due today!
* APT-5 due Thur, March 30

* Recommend to do before Assignment 5/APT Quiz 2
e Assign 5 Clever Guess Word out — due April 6

* Teaching Professor, UCSD
* PhD Computer Science, MIT

* Her work is in designing CS
curriculum that is more accessible

and more appealing to all » Talk about next time

* LogiSketch — draw and simulate

o * Lab 8 Friday, do prelab
digital circuits

* Next Week
“It’s important to choose your own path, and try not to * APT Quiz 2 Thurs, March 30-April 3
compare yourself to others. You have your own unique .
circumstance, so what others do or don’t do shouldn’t
really affect your life.”

3/23/23 Compsci 101, Spring 2023 3 3/23/23 Compsci 101, Spring 2023 4

Exam 2 regrades request

PFTD

Venmo Apt

Dictionaries
* More Practice
e Fast!

Family APT

Clever GuessWord next time

3/23/23 Compsci 101, Spring 2023 5

Clever GuessWord

* Current GuessWord: Pick random secret word
* User starts guessing

* Can you change secret word?

* Yes, but must have letters in same place you have
told user

* Change consistent with all guesses
* Make the user work harder to guess!

* Discuss how next time

3/23/23 Compsci 101, Spring 2023 7

Assignment 5 - How to play
Guess Word Cleverly

* Make it hard for the player to win!

* One way: Try hard words to guess?

* "jazziest", "joking", "bowwowing"

* Another Way: Keep changing the word, sortof

©

3/23/23 Compsci 101, Spring 2023 6

VenmoTracker APT

* If Harry pays Sally $10.23,
* "Harry:Sally:10.23" then Harry is out $10.23

The easiest way to
pay your friends.

3/23/23 Compsci 101, Spring 2023 8

APT: VenmoTracker
APT Venmo Tracker Example

Problem Statement
Specification

You've been asked to help manage
reports on how often people spend
money using Venmo and whether they | filename: VemmoTracker.py

receive more money than they pay
out. The mput to your program is a
list of transactions from Venmo. Each return list of strings based on transactiomns, Examples

2 hich is al list of stri
transaction has the same form: Walch 15 850 & 14St ol strings

def networth(transactions):

"from: to:amount” Where from 1s the
name of the person paying amount # you write code hers

dollars to the person whose name is return [] 1. transactions: ["owen:su=an:10", "owen:robert:10", "owen:drew:10"]
to_ The value of amount will be a
valid float with at most two decimal places. returns ['drew:10.0"', "owen:-30.0"', 'robert:10.0', 'sus=san:10.0']

Return a list of strings that has each person who appears i any transaction with the net cash flow

through Venmo that person has received. Every cent paid by the person to someone else is a pay-out and Owen pays everyone.
every cent received by a person is a pay-in. The difference between pay-out and pay-in is the cash flow

received. This will be negative for each person who pays out more than they get via pay-in. See the

examples for details.

The list returned should be sorted by name. Strings in the list returned are in the format "name:netflow"
where the netflow 1s obtamed by using str (val) where val 1s a float representing the net cash flow for
that person.

Store money as int values, multiplying by 100 and dividing by 100 as needed for processing input
and output, respectively.

WOTO-1 VenmoTracker

http:/ /bit.ly/101s23-0323-1 Tools We’ve Used Before

* Keep track of every person we see
* Use alist

* Keep track of net worth: money in, money out
e Use a parallel list

Maintain invariant: names [k] <-> money[k]

/EX\

INVARIANT

* kth name has k" money

Example:

["Harry:Sally:10.23“, “Zeyu:Sally:20.00”,
“Sally:Barak:10.00"]

* How would we solve this?
e Could we use a parallel list?
* What would be the output?

Put Harry in:
"Harry:Sally:10.23“

names =[“Harry”]
0

money =[-10.23]
0

Process Transaction
"Harry:Sally:10.23"

names =[]

money =[]

Put Sally in:
"Harry:Sally:10.23"

names = [“Harry”, “Sally”]
0 1

money =[-10.23, 10.23]
0 1

Process next transaction
"Zeyu:Sally:20.00"

names = [“Harry”, “Sally”]
0 1

money = [-10.23, 10.23]
0 1

Update Sally in:
“Zeyu:Sally:20.00”

names =[“Harry”, “Sally”, “Zeyu”]
0 1 2

money =[-10.23, 30.23, -20.00]
0 1 2

Put Zeyu in:
“Zeyu:Sally:20.00”

names =[“Harry”, “Sally”, “Zeyu”]
0 1 2

money =[-10.23, 10.23, -20.00]
0 1 2

Process next Transaction
“Sally:Barak:10.00”

names =[“Harry”, “Sally”, “Zeyu”]
0 1 2

money =[-10.23, 30.23, -20.00]
0 1 2

Update Sally in:
“Sally:Barak:10.00”

names =[“Harry”, “Sally”, “Zeyu”]
0 1 2

money =[-10.23, 20.23, -20.00]
0 1 2

Coding up Venmo

def networth(transactions):
names =[]
money =[]
for trans in transactions:
split up trans

Add Barak in:
“Sally:Barak:10.00”

names = [“Harry”, “Sally”, “Zeyu”,
0 1 2

money =[-10.23, 20.23, -20.00,
0 1 2

Coding up Venmo

def networth(transactions):

names =[]

money =[]

for trans in transactions:
split up trans
data = trans.split(":")
sender = data[0]
receiver = data[1]

amount = float(data[2])

“Barak”]

3

10.00]
3

Coding up Venmo

if sender not in names:
names.append(sender)
money.append(0)

similar if receiver not in names

update money

indexSender = names.index(sender)

indexReceiver = names.index(receiver)

money[indexSender] -= amount

money[indexReceiver] += amount

create output in correct format

Let’s try Dictionaries....

Seen parallel lists before

* Solution outlined is reasonable, efficient?
* How long does it take to find index of name?
* |t depends. Why?

e list.index (elt) orelt in list -—fast?

* What does "fast" mean? Relative to what?

Example:

["Harry:Sally:10.23“, “Zeyu:Sally:20.00”,
“Sally:Barak:10.00]

* How would we solve this?
* Could we use a dictionary?
* What would be the output?

Example with Dictionary
1) "Harry:Sally:10.23"

e Start with empty dictionary, insert Harry

Harry

\

-10.23

Example with Dictionary
2) “Zeyu:Sally:20.00"

* Insert Zeyu, next update Sally

—» -20.00

eyu =

| B -10.23
Sally
\ 10.23

Harry

Example with Dictionary
1) "Harry:Sally:10.23"

* Insert Sally

Harry

| B -10.23
Sally
\ 10.23

Example with Dictionary
2) “Zeyu:Sally:20.00"

* Update Sally

—» -20.00

eyu =

| B -10.23
Sally
\ 30.23

Harry

Example with Dictionary
3) “Sally:Barak:10.00"

* Next Transaction — First update Sally

—» -20.00

eyu =

\

-10.23

Sally

Harry

Example with Dictionary
3) “Sally:Barak:10.00"

* Insert Barak

—» -20.00

eyu =

\

-10.23

Sally

Barak —

Harry

— 10.00

Example with Dictionary
3) “Sally:Barak:10.00"

* Update Sally

—» -20.00

eyu =

\

-10.23

Sally

Harry

Return Value
Zeyu — —* -20.00

Harry =——— _10.23
Sally —

Barak —

- 20.23
— 10.00

* List of (key, value) pairs
* [("Zeyu", -20.00), ("Harry", -10.23), ("Sally", 20.23),

("Barak", 10.00)]

Return Value

Zeyu — -+ -20.00
Harry =——— _10.23
Sally — — 20.23

Barake
— 10.00

* [("Zeyu", -20.00), ("Harry", -10.23), ("Sally", 20.23),
("Barak", 10.00)]

Sort by name:

* [("Barak", 10.00), ("Harry", -10.23), ("Sally", 20.23),
("Zeyu", -20.00)]

How would the code be different if we
used a dictionary?

Return Value

Zeyu — -+ _-20.00
Harry =——— _10.23
Sally — — 20.23

Barake
— 10.00

* [("Barak", 10.00), ("Harry", -10.23), ("Sally", 20.23),
("Zeyu", -20.00)]
Put in final format:

* ["Barak:10.00", "Harry:-10:23", "Sally:20.23",
"Zeyu:-20.00"]

Coding up Venmo with Dictionary

def networth(transactions):
venmo ={}
for trans in transactions:
split up trans

Coding up Venmo with Dictionary Coding up Venmo with Dictionary

if sender not in venmo: R
Insert in dictionary
venmo(sender] =0

for trans in transactio # similar if receiver not in names
This part the same
split up trans # update money
data = trans.split(“:"”) venmo[sender] -= amount

sender = data[0] venmo[receiver] += amount

receiver = data[1] # create output in correct format
amount = float(data[2])

def networth(transactions): o

venmo ={}

Code is faster for dictionaries!

3/23/23 Compsci 101, Spring 2023 41 3/23/23 Compsci 101, Spring 2023 42

You will need to finish it Dictionary lteration (unordered!)

* Now onto more on Dictionaries... * [terate through keys:
« for k in d:
 for k in d.keys():

* [terate through pairs:
 for (k,v) in d.items():
 for k,v in d.items():

3/23/23 Compsci 101, Spring 2023 43 3/23/23 Compsci 101, Spring 2023 44

Sorting a list from dictionary - sorted() Sorting a list from dictionary - sorted()

d={'k':3,'h': 8,'a": 12, 'd": 5} d={'k":3,'h': 8,'a": 12, 'd": 5}

x = sorted(d.keys()) x = sorted(d.keys()) xis ['a','d’,'h’, k']
y = sorted(d.values()) y = sorted(d.values()) yis [3,5,8,12]
z = sorted(d.items()) z = sorted(d.items()) zis [('a', 12),('d', 5),
(‘h",8), ('k', 3)]
WordFrequencies slowcount function
Dictionary Example Short Code and Long Time

* See module WordFrequencies.py
* Find # times each word in a list of words occurs
* We have tuple/pair: word and word-frequency

* Let’s see an example that compares using a
dictionary vs not using a dictionary

def slowcount(words):
pairs = [(w,words.count(w)) for w in set(words)]

return sorted(pairs)

* Think: How many times is words . count (w) called?
* Why is set (words) used in list comprehension?

WordFrequencies with Dictionary

* |If start with a million words, then...

* We look at a million words to count # "cats"
e Then a million words to count # "dogs"
* Could update with parallel lists, but still slow!
* Look at each word once: dictionary!

* Key idea: use word as the "key" to find
occurrences, update as needed

* Syntax similar to counter[k] += 1

3/23/23 Compsci 101, Spring 2023 49

Using fastcount

* Update count if we've seen word before
* Otherwise it's the first time, occurs once

def fastcount(words): dictionary

d = {}
for w in wordsm

if w in d:

" key already

else:

i1l - 1 e
return sorted(d.items()) value

3/23/23 Compsci 101, Spring 2023 51

Using fastcount

* Update count if we've seen word before
* Otherwise it's the first time, occurs once

def fastcount(words):

d = {}
for w in words:
if w in d:
dlwl += 1
else:
dlw] =1

return sorted(d.items())

3/23/23 Compsci 101, Spring 2023 50

Let’s run them and compare them!

* Run with Melville and observe time

* Run with Hawthorne and observe time

3/23/23 Compsci 101, Spring 2023 52

Let’s run them and compare them!

* Run with Melville and observe time
* slowcount about 0.76 seconds
e fastcount about 0.00 seconds

* Run with Hawthorne and observe time
e slowcount about 14.6 seconds
e fastcount about 0.03 seconds

Problem Solving

* Given Brodhead University. They have a basketball
team.

* Data on players and how they did when playing
against another team.

e List of lists named datalist

e Each list has
* school opponent name
* player name
* Points player scored
* Whether game was ‘won’ or ‘lost’

WOQOTO-2 Counting Dictionaries
http:/ /bit.ly /101s23-0323-2

Example: lists of 20 lists
datalist =

[['Duke’, 'Bolton’, '2', 'lost’],
['NCSU', 'Stone’, '12', 'won’],
['Duke’, 'Kreitz', '3', 'lost’],
['Duke’, 'Pura’, '6', 'lost’],

['GT', 'Dolgin', '4', 'lost’],
['WFU', 'Laveman’, '20', 'won’],
['ECU', 'Parlin’, '15', 'won’],
['UNC', 'Stone', '17', 'won’],
['UNC', 'Dolgin’, '12', 'won’],
['UNC', 'Kreitz', '5', 'won’],

['Duke’, 'Stone’, '16', 'lost’],
['Duke’, 'Laveman’, '13', 'lost’],
['NCSU', 'Kreitz', '8, 'won'],
['NCSU', 'Dolgin’, '18', 'won’],
['NCSU', 'Parlin’, '13', 'won'],
['GT', 'Bolton’, '7', 'lost’],

['GT', 'Stone’, '9', 'lost'],
['WFU', 'Parlin’, '14', 'won'],
['ECU', 'Laveman’, '16', 'won’],
['ECU', 'Pura’, '15', 'won’]]

1) Write function
dictPlayerToNumGamesPlayedIn

Build a dictionary of players mapped to number of
games they have played in.

def dictPlayerToNumGamesPlayedIn(datalist):

With previous example, player ‘Laveman’ would be
mapped to 3 games

3/23/23 Compsci 101, Spring 2023 57

Write function
dictPlayerToNumGamesPlayedIn

def dictPlayerToNumGamesPlayedIn (datalist) :

d = {}
for line in datalist:

needs its own
count, build a
dictionary

player = line[1]
if player in d:
dlplayer] += 1

else:

dlplayer] =1

return d counting

dictionary

3/23/23 Compsci 101, Spring 2023

Woto-3 Players and Games Played in
http:/ /bit.ly/101s23-0323-3

3/23/23 Compsci 101, Spring 2023

ANOTHER WAY: Write function
dictPlayerToNumGamesPlayedIn

def dictPlayerToNumGamesPlayedIn (datalist) :
d = {}
for line in datalist:
player = line[1]
if player not in d:
d[player] = 0
d[player] += 1

return d

3/23/23 Compsci 101, Spring 2023 60

Calculate list of players who played in 3 or more games,
give (player name, number of games played in),
sort by player name

2) Write function
playersPlayedInNumGames(number, datalist)
[('Dolgin', 3), ('Kreitz', 3), (‘Laveman’, 3), ('Parlin', 3), ('Stone', 4)]
[['Duke’, 'Bolton’, '2', 'lost’],
['NCSU', 'Stone’, '12', 'won’],
['Duke’, 'Kreitz', '3', 'lost’],

['Duke’, 'Stone’, '16', 'lost’],
['Duke’, 'Laveman’, '13', 'lost’],
['Duke’, 'Pura’, '6', 'lost’], {::g:ﬂ:; :g:;elgizr;",'?ll'sl":v‘wc;]r;’],
['GT’, 'Dolgin’, '4', "lost’], ['NCSU', 'Parlin’, '13', 'won'],
['WFU', 'Laveman’, '20', 'won’], ['GT', 'Bolton’, 7', 'lost’],
['ECU', 'Parlin', I15', 'won'], ['GT', 'Stone', |9|’ '|OSt'],
['UNC', 'Stone’, '17', 'won’], ['WFU', 'Parlin’, '14', 'won'],
['UNC', 'Dolgin’, '12', 'won’], ['ECU', 'Laveman’, '16', 'won’],
['UNC, 'Kreitz', '5', 'won’], ['ECU’, 'Pura’, '15', 'won’]]

2) Write function
playersPlayedInNumGames(number, datalist)

ANOTHER WAY 2) Write function

playersPlayedInNumGames(number, datalist)

def playersPlayedinNumGames(number, datalist): def playersPlayedinNumGames(number, datalist):

d = dictPlayerToNumGamesPlayedin(datalist)
build a list of tuples
answer =[]
for player in d.keys():
if d[player] >= number:
answer.append((player, d[player]))
return sorted(answer)

d = dictPlayerToNumGamesPlayedin(datalist)
build a list of tuples
answer =[]
for (player, count) in d.items():
if count >= number:
answer.append((player, count))
return sorted(answer)

ANOTHER WAY 2) Write function Stopped here _
playersPlayedinNumGames(number, datalist) donexime APT Fam”y

Another way using a list comprehension! APT: Family
However, this is putting a lot in one long line.

It may be better to break it up into steps as the previous

two slides do. Less chance to make a mistake. Problem Statement

You have two lists: parents and children. The 1th element in
parents 18 the parent of the 1th element in children. Count the

def playersPlayediInNumGames(number, datalist): number of grandchildren (the children of a person's children)
d = dictPlayerToNumGamesPlayedIn(datalist) for the person in the pexscn variable.
build a list of tuples Hint: Consider making a helper function that returns a list of a

person's children.

return sorted([(player, count) for (player,count) in
d.items() if count >= number])

3/23/23 Compsci 101, Spring 2023 65 3/23/23 Compsci 101, Spring 2023 67

