Compsci 101

Selection, Lists, Sequences, Faces

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>A and B</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>A and B</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>A and B</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>A or B</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>A or B</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>A or B</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>A or B</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>not A</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>not A</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Susan Rodger
January 26, 2023

E is for ...

- **Escape Sequence**
 - Why \n is newline and \t is a tab
- **Encryption**
 - From Caesar Ciphers to SSL (https) and beyond
- **Enumerate**
 - Iterating over data, counting
- **Email**
 - a way to communicate

Luis von Ahn, Guatemalan entrepreneur
Duke BS Math 2000, CMU PhD CS

“I build systems that combine humans and computers to solve large-scale problems that neither can solve alone. I call this Human Computation, but others sometimes call it crowdsourcing.”

"In college, I thought my goal in life was to get a good GPA, but it’s equally important to get involved with a good professor doing good research. Take advantage of what’s going on around you."

Announcements

- **APT-1 is due tonight!**
 - Run each APT on the APT tester, 1 grace day
 - Check your grade – click check submissions
- **QZ01-05 turned off at 10:15am today!**
 - Be sure to do QZ06 by 10:15am on Thursday!
- **Assignment 1 Faces is out, program due Feb 2**
 - Read the whole thing
 - Assign1 Sakai Quiz – **Due Jan. 31 – no grace day**
- **Lab 2 Friday**
 - Prelab 2 do before attending lab
 - Always: Reading and Sakai quiz before next class
Announcements

- **APT-1 is due tonight!**
 - Run each APT on the APT tester, 1 grace day
 - Check your grade – click *check submissions*
- **QZ01-05 turned off at 10:15am today!**
 - Be sure to do QZ06 by 10:15am on Tuesday!
- **Assignment 1 Faces is out, program due Feb 2**
 - Read the whole thing
 - Assign1 Sakai Quiz – *Due Jan. 31 – no grace day*
- **Lab 2 Friday**
 - Prelab 2 do before attending lab
 - Always: Reading and Sakai quiz before next class

QZ01-03 1/28 10:15am
QZ04 1/29 10:15am
QZ05 1/30 10:15am

QZ01-03 has been extended until 1/28 10:15am.

PFTD

- **Finish WOTO from last time**
- **Assignment 1**
 - **Strings**
 - Sequence of characters, “CompSci 101”
 - **Lists**
 - Heterogenous sequences
 - **Sequences**
 - len(...), indexing, and slicing
 - **Functions as Parameters**

Go over WOTO-3 from last time

Assignment 1 and Pre-Lab 2

- **Assignment 1 Faces due Feb 2**

- **Sakai Quiz on Assignment 1**
 - Read through assignment 1
 - Take the quiz
 - Can take many times
 - Due Jan 31 (no grace day)!

- **Prelab 02 – before lab**
 - Read Assignment 1 and take its quiz once
Assignment 1: Faces

Learning Goals: Faces

- Understand differences and similarities:
 - Function definitions vs function calls
 - Functions with return statements vs those without
 - Functions with parameters vs those without
 - Functions can be arguments

- Be creative and learn lesson(s) about software design and engineering
 - Create a small, working program, make incremental improvements.
 - Read the directions and understand specifications!

Function Name Format

<table>
<thead>
<tr>
<th>Function Name Template</th>
<th>Parameters</th>
<th>Returns</th>
<th>Example: Function names</th>
</tr>
</thead>
<tbody>
<tr>
<td>part_DESCRIPTION</td>
<td>No parameters</td>
<td>A string</td>
<td>part_smiling_mouth</td>
</tr>
<tr>
<td>DESCRIPTION_face</td>
<td>No parameters</td>
<td>No return value, only prints</td>
<td>happy_face</td>
</tr>
<tr>
<td>face_with_DESCRIPTION</td>
<td>1 or 2 parameters of type function</td>
<td>No return value, only prints</td>
<td>face_with_mouth</td>
</tr>
<tr>
<td>faces_DESCRIPTION</td>
<td>No parameters</td>
<td>No return value, calls face functions</td>
<td>faces_fixed, faces_selfie, faces_random</td>
</tr>
</tbody>
</table>

selfie_band, face_random – helper functions!

With functions grow by...
Faces Assignment
What should you do ...

- Read the assignment
- Do the Assignment 1 Sakai quiz
- Create project and start writing code (do not need to finish)

Goal: Find your first question about how to do this assignment then ask on Ed Discussion (anonymously) or at consulting/office hours

Review Selection Syntax

```python
if BOOLEAN_CONDITION:
    CODE_BLOCK_A
else:
    CODE_BLOCK_B
```

- What is similar and different?
 - What other variations could work?
 - Could only `elif...else` work?
 - `if` – required
 - `elif` – optional, as many as needed
 - `else` – optional, no condition

Boolean condition (True/False)

```python
if BOOLEAN_CONDITION:
    CODE_BLOCK_A
```

- See `type(3 < 5)`
- Relational operators: `< ` `<= ` `>= ` `== ` `!=`
- Boolean operators: `and ` `or ` `not`

Console on Booleans
Boolean Operations

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A or B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>not A</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Example with And and Or

```python
x = 3
y = 8
if x < 2 or y > 2:
    print("first")
elif x > 2 and y < 2:
    print("second")
else:
    print("third")
```

OUTPUT:

```
second
```

Strings - Indexing

- x = "chair"
- y = "desk"
- w = len(x)
- v = x[len(y)]
- t = x[len(x)]
Lists

- Syntax: `[ITEM_1, ITEM_2, ITEM_3, …]`
 - Starts and ends with square brackets: `[…]`
 - Elements in the list are divided by commas “,”
- Lists can be **heterogenous** sequence
 - Strings, ints, lists, anything

```
[1, 2, 3]
["hello", "world"]
["count", "off", 1, 2, 3.0, "done"]
```

Python Sequences

- Types String and List are both sequences
- A sequence in Python has
 - Length - `len(...)`
 - Membership – `in`
 - Indexing and slicing – `[n]`, `[n:m]`
- Difference:
 - String is immutable – cannot change
 - List is mutable – can change

len(...) for Python Sequences

- Length – the number of *elements* in a sequence
- `len(...)` – returns the length of a sequence

- `s="hello world"` `l=["hello", "world"]`
 - What is `len(s)`?
 - What is `len(l)`?

in for Python Sequences

- `in` checks for membership in the sequence
 - True/False – if `element in seq`

- `s="hello world"` `lst=["hello", "world"]`
 - What is an element for the string `s`? List `lst`?
 - What is:
 - `'h' in s`?
 - `'h' in lst`?
 - "hello" in lst?
Indexing Python Sequences

- `s="hello world" l=["hello", "world"]`
- Indexing provides access to individual elements
 - Compare `s[0]` and `l[0]`
 - Start with 0 offset, what is last valid positive index?
- Compare `s[-1]` and `l[-1]`
 - What is negative index of second to last element?
 - Index `-n` is the same as index `len(seq) - n`

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>E</td>
<td>L</td>
<td>L</td>
<td>O</td>
<td>W</td>
<td>O</td>
<td>R</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

Slicing Python Sequences

- `s="hello world"
- `lst=["my", "big", "beautiful", "world"]`
- Slicing provides sub-sequence (string or list)
 - `seq[n:m]` – all elements `i`, s.t. `n <= i < m`
 - Compare `s[0:2]` and `lst[0:2]`
 - `s[0:2]` is
 - `lst[0:2]` is
 - What is length of subsequence? `len(lst[1:3])`
 - `lst[1:3]` is
 - `len(lst[1:3])` is

WOTO-2 Sequence Length Indexing

In your groups:
- Come to a consensus

Learning Goals: Faces

- Understand differences and similarities:
 - Function definitions vs function calls
 - Functions with return statements vs those without
 - Functions with parameters vs those without
 - Functions can be arguments

- Be creative and learn lesson(s) about software design and engineering
 - Create a small, working program, make incremental improvements.
 - Read the directions and understand specifications!