Compsci 101
Selection, Lists, Sequences, Faces

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>A and B</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>A and B</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>A and B</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>A or B</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>A or B</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>A or B</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>A or B</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>not A</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>not A</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
E is for ...

- **Escape Sequence**
 - Why \n is newline and \t is a tab
- **Encryption**
 - From Caesar Ciphers to SSL (https) and beyond
- **Enumerate**
 - Iterating over data, counting
- **Email**
 - a way to communicate
Luis von Ahn, Guatemalan entrepreneur
Duke BS Math 2000, CMU PhD CS

“I build systems that combine humans and computers to solve large-scale problems that neither can solve alone. I call this Human Computation, but others sometimes call it crowdsourcing.”

"In college, I thought my goal in life was to get a good GPA, but it's equally important to get involved with a good professor doing good research. Take advantage of what's going on around you."
Announcements

• APT-1 is due tonight!
 • Run each APT on the APT tester, 1 grace day
 • Check your grade – click check submissions

• QZ01-05 turned off at 10:15am today!
 • Be sure to do QZ06 by 10:15am on Thursday!

• Assignment 1 Faces is out, program due Feb 2
 • Read the whole thing
 • Assign1 Sakai Quiz – Due Jan. 31 – no grace day

• Lab 2 Friday
 • Prelab 2 do before attending lab

• Always: Reading and Sakai quiz before next class
Announcements

• APT-1 is due tonight!
 • Run each APT on the APT tester, 1 grace day
 • Check your grade – click *check submissions*

• QZ01-05 turned off at 10:15am today!
 • Be sure to do QZ06 by 10:15am on Tuesday!

• Assignment 1 Faces is out, program due Feb 2
 • Read the whole thing
 • Assign1 Sakai Quiz – *Due Jan. 31* – no grace day

• Lab 2 Friday
 • Prelab 2 do before attending lab

• Always: Reading and Sakai quiz before next class
PFTD

• Finish WOTO from last time
• Assignment 1
• Strings
 • Sequence of characters, “CompSci 101”
• Lists
 • Heterogenous sequences
• Sequences
 • len(...), indexing, and slicing
• Functions as Parameters
Go over WOTO-3 from last time
Assignment 1 and Pre-Lab 2

• Assignment 1 Faces due Feb 2

• Sakai Quiz on Assignment 1
 • Read through assignment 1
 • Take the quiz
 • Can take many times
 • Due Jan 31 (no grace day)!

• Prelab 02 – before lab
 • Read Assignment 1 and take its quiz once
Assignment 1: Faces
Learning Goals: Faces

• **Understand differences and similarities:**
 • Function definitions vs function calls
 • Functions with return statements vs those without
 • Functions with parameters vs those without
 • Functions can be arguments

• **Be creative and learn lesson(s) about software design and engineering**
 • Create a small, working program, make incremental improvements.
 • Read the directions and understand specifications!
Function Name Format

<table>
<thead>
<tr>
<th>Function Name Template</th>
<th>Parameters</th>
<th>Returns</th>
<th>Example: Function names</th>
</tr>
</thead>
<tbody>
<tr>
<td>part_DESCRIPTION</td>
<td>No parameters</td>
<td>A string</td>
<td>part_smiling_mouth</td>
</tr>
<tr>
<td>DESCRIPTION_face</td>
<td>No parameters</td>
<td>No return value, only prints</td>
<td>happy_face</td>
</tr>
<tr>
<td>face_with_DESCRIPTION</td>
<td>1 or 2 parameters of type function</td>
<td>No return value, only prints</td>
<td>face_with_mouth</td>
</tr>
<tr>
<td>faces_DESCRIPTION</td>
<td>No parameters</td>
<td>No return value, calls face functions</td>
<td>faces_fixed, faces_selfie, faces_random</td>
</tr>
</tbody>
</table>

selfie_band, face_random – helper functions!
With functions grow by...

```python
def part_hair_pointy():
    a1 = r"012345678901234567"
    a2 = r" /\\\\\\\\\\\\\\\\\" 
    return a2

def happy_face():
    print(part_hair_pointy())

def faces_fixed():
    pass

def faces_selfie():
    pass

def faces_random():
    pass

if __name__ == '__main__':
    print("\nfixed group of three faces\n")
    faces_fixed()

    print("\ngroup of three self faces\n")
    faces_selfie()

    print("\ngroup of three random faces\n")
    faces_random()
```
Faces Assignment
What should you do ...

• Read the assignment
• Do the Assignment 1 Sakai quiz
• Create project and start writing code (do not need to finish)

• Goal: Find your first question about how to do this assignment then ask on Ed Discussion (anonymously) or at consulting/office hours
Review Selection Syntax

- What is similar and different?
 - What other variations could work?
 - Could only `elif...else` work?
- `if` – required
- `elif` – optional, as many as needed
- `else` – optional, no condition
Boolean condition (True/False)

```python
if BOOLEAN_CONDITION:
    CODE_BLOCK_A
```

- See `type(3 < 5)`
- Relational operators: `< <= > >= == !=`
- Boolean operators: `and` `or` `not`
Console on Booleans

```python
import sys; print('Python %s on %s')
sys.path.extend(['C:\Users\Susan'])

Python Console

>>> |
```
Boolean Operations

<table>
<thead>
<tr>
<th>A and B</th>
<th>A</th>
<th>B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>A or B</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>not A</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Example with And and Or

```python
x = 3
y = 8
if x < 2 or y > 2:
    print("first")
elif x > 2 and y < 2:
    print("second")
else:
    print("third")
```

```
x = 3
y = 2
if x < 2 or y > 2:
    print("first")
elif x > 2 and y < 2:
    print("second")
else:
    print("third")
```
WOTO-1 Review Functions and Booleans

• In your groups:
 • Come to a consensus

<table>
<thead>
<tr>
<th>A and B</th>
<th>A</th>
<th>B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
Strings - indexing

• x = "chair"
• y = "desk"
• w= len(x)
• v = x[len(y)]
• t = x[len(x)]
Lists

• **Syntax:** `[ITEM_1, ITEM_2, ITEM_3, ...]
 • Starts and ends with square brackets: `[...]`
 • Elements in the list are divided by commas “, ”
• Lists can be *heterogenous* sequence
 • Strings, ints, lists, anything

```
[1, 2, 3]
["hello", "world"]
["count", "off", 1, 2, 3.0, "done"]
```
Python Sequences

• Types String and List are both sequences
• A sequence in Python has
 • Length - `len(...)`
 • Membership – `in`
 • Indexing and slicing – `[n]`, `[n:m]`
• Difference:
 • String is immutable – cannot change
 • List is mutable – can change
len(...) for Python Sequences

- Length – the number of *elements* in a sequence
- `len(...)` – returns the length of a sequence

- `s="hello world"` `l=["hello", "world"]`
 - What is `len(s)`?

- What is `len(l)`?
in for Python Sequences

• in checks for membership in the sequence
 • True/False – if element in seq

• s="hello world" lst=["hello", "world"]
 • What is an element for the string s? List lst?
 • What is: 'h' in s?
 • What is: 'h' in lst?
 • What is: "hello" in lst?
Indexing Python Sequences

- \texttt{s=}\texttt{"hello world"} \texttt{l=}[\texttt{"hello", "world"]
- Indexing provides access to individual elements
 - Compare \texttt{s[0]} and \texttt{l[0]}
 - Start with 0 offset, what is last valid positive index?
 - Compare \texttt{s[-1]} and \texttt{l[-1]}
 - What is negative index of second to last element?
 - Index $-n$ is the same as index $\texttt{len(seq)} - n$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>E</td>
<td>L</td>
<td>L</td>
<td>O</td>
<td>W</td>
<td>O</td>
<td>R</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>
Slicing Python Sequences

• `s="hello world"
• `lst=["my", "big", "beautiful", "world"]

Slicing provides sub-sequence (string or list)

• `seq[n:m] – all elements i, s.t. n <= i < m

• Compare `s[0:2] and `lst[0:2]
 • `s[0:2] is
 • `lst[0:2] is

• What is length of subsequence? `len(lst[1:3])
 • `lst[1:3] is
 • `len(lst[1:3]) is
WOTO-2 Sequence Length Indexing

• In your groups:
 • Come to a consensus
Learning Goals: Faces

• Understand differences and similarities:
 • Function definitions vs function calls
 • Functions with return statements vs those without
 • Functions with parameters vs those without
 Functions can be arguments

• Be creative and learn lesson(s) about software design and engineering
 • Create a small, working program, make incremental improvements.
 • Read the directions and understand specifications!
Name vs Value vs Type

Represent: Memory Address

Names

Values

Type