Compsci 101
List Comprehensions, Parallel
Lists

Susan Rodger
Feb 21, 2023

Tiffany Chen

Duke BS - IDM CS/Biology

Stanford PhD Biomedical
Informatics (CS and
Biomedicine)

Was Director of Informatics,
Cytobank

Now Group Product Manager at
Chan Zuckerberg Inititave

“Part of the advantage of being
interdisciplinary is that you can see the
big picture when no one else can, and
you can communicate to everyone else
what that big picture is”

“If you are interested in a PhD, | would
suggest doing a summer research
experience as an undergraduate, but also
an internship in industry. You can see how
problems are solved in the real world”

 Kernel

K is for ...

* Core of the OS, Core for Machine Learning

* Keyboard - QWERTY or DVORAK

e DVORAK:
- A
'r.b”_; . < > P Cc R L # * !
cf;L“jA : OQEJ uK | XDBHMTWNJSJ-%EE

S

il m: Alt \ Al Gr m: Menu | Cirl

* Key and (Key,Value) pair
* Heart of a dictionary
Announcements

APT-3 due Thursday
Assign 3-Transform out today, due Thursday, March 2
* Sakai quiz Assign3 — Due Tues, Feb 28 (no grace day)
Lab 6 Friday - Prelab out today
APT Quiz 1 is Thurs Feb 23-Mon Feb 27
* Take during this time
* Two parts — each part has two APTs
* Each part is timed

PFTD

APT Quiz 1

Pancakes

Parallel Lists

List Comprehensions

* Assignment 3 - Transform Assignment

APT Quiz 1

* |Is your own work!
* No collaboration with others!
* Use your notes, lecture notes, your code, textbook
* DO NOT search for answers! No Chat-GPT!

* Do not talk to others about the quiz until grades
are posted

* Post private questions on Ed Discussion
* We are not on between 9pm and 9am!
* We are not on all the time, especially weekends

* Will try to answer questions between 9am — 9pm
* About typos, cannot help you in solving APTs

* See 101 APT page for tips on debugging APTs

APT Quiz 1 Feb 23-27
* Opens 2/23 1pm
* Closes at 11pm 2/27- must finish all by this time
* There are two parts based on APTs 1-3
e Each part has two APT problems

* Each partis 2 hours — more if you get
accommodations

e Each part starts in Sakai under tests and quizzes

 Sakai is a starting point with countdown timer that
sends you to a new apt page just for each part

* Could do each part on different day or same days

* Old APT Quiz so you can practice (not for credit) —
on APT Page

CompSci 101, Spring 2023
APTs

Home About Dates Labs Assign APTs Help Forms Resources Sakai

APT Quiz

There will be two APT Quizzes that are just like APTs but are your own work and are timed. Start the APT quiz on Sakai under quizzes,
but not until you are ready to take the quiz.

APTs

See below for hints on what to do if your APT doesn't run.
For each problem in an APT set, complete these steps by the due date
« first diick on the APT set below to go to the APT page.
« write the code, upload the file, select the problem, and dlick the Submit link

« check your grade on the grade code page by dicking on check submissions

In seolving APTs, your program should work for all cases, not just the test cases we provide. We may test your program on additional
a.

APT Due Date
IAPT-1 January 26
|APT-2 February 9
|APT-3 February 23
PRACTICE
FOR APT QUIZ 1 NOT FOR CREDIT

We may do some APTs partially in class or lab, but you still have to do them and submit them. There will usually be extra apts listed.
You can do more than required to challenge yourself. We do notice if you do more APTs than those required. If you do extra APTs,
they still have to be turned in on the due date.

Regrades

If you have concerns about an item that was graded (lab, apt or assignment), you have one week after the grade is posted to fill out
the regrade form here

Problems Running an APT? Some Tips!

Pancakes! APT Pancake

* How do you solve this (or any) problem?
e 7 Steps!

* Some APTs are hard problems to solve (step 1-4)
* Translating to code easy
* Some APTs have easy-to-see algorithms (step 5)

* Translating to code is hard

APT: Pancakes

Examples
1. numCakes = 0
Problem Statement L capacity = 4
Specification
You're a short-order cook in a pancake Returns: 0

restaurant, so you need to cook pancakes
as fast as possible. You have one pan that | filename: Pancakes.py .
can fit capaci ty pancakes at a time. ‘ . It takes no time to cook 0 pancakes.
v . def minutesNeeded (numCakes, capacity):

Using this pan you must cook numCakes wan

pancakes. Each pancake must be cooked return integer representing time to cook pancakes
for five minutes on each side, and once a based on integer parameters as described below 2
pancake starts cooking on a side it has to -
cook for five minutes on that side.
However, you can take a pancake out of the pan when you're ready to flip it after five minutes and put it back in Raturas: 10
the pan later to cook it on the other side.

N

numCakes =
capacity = 2

Write the method, minutesNeeded, that returns the shortest time needed to cook numcakes pancakes in a pan

You cook both pancakes on one side for five minutes, then flip them over and cook
that holds capacity pancakes at once. See the examples.

each on the other side for another five minutes.

Step 1: Solve an instance
Three pancakes in a two-cake pan

* First 5 minutes e Second 5 minutes
* 2 half cooking * 2 half cooking
¢ 1 uncooked * 1 almost cooked

+“To @Ye

WOTO-1 Pancakes
http:/ /bit.ly/101s23-0221-1

Step 1: Solve an instance

* What kind of instances? Simple cases that are
quickly solved

e What are these in Pancake problem?

* Don’t solve for N, solve for 5 (generalize is step 3)
* What to do when there are two parameters?

* Fix one, vary the other one [-
. . ~ \& u‘—‘ (z
* Helps identify cases :;> \Q@
o
<«%)

)

Problem

* Given a file of words, which word occurs the most

* For each word count how many times it occurs
* Determine which word has the highest count

Parallel Lists

* We will use parallel lists to track data
* Each word is stored in a list named words
* Word’s count is stored in a list named counts
* # occurrences of words [k] is in counts [k]

[" apple" , " foxll , "vacuum" , Hlime "] E
[5, 2, 25, 15]

e

2/21/23 Compsci 101, Spring 2023 32

Parallel Lists

* We will use parallel lists to track data
* Each word is stored in a list named words
* Word’s count is stored in a list named counts
* # occurrences of words [k] is in counts [k]

[" apple " , " foxH , Hvacuum" , " lime mw]
[5, 2, 26, 15]

* What happens when we read a word?

Read word “cat”?
2/21/23

Parallel Lists

* We will use parallel lists to track data
* Each word is stored in a list named words
* Word’s count is stored in a list named counts
* # occurrences of words [k] is in counts [k]

[" apple " , " foxH , Hvacuum'l , " lime mw]
[5, 2, 25, 15]

* What happens when we read a word?

Read word “vacuum”?

2/21/2 01, Spring 2023 35

Calculate word most often in file

def wordOccursTheMost(fname):
£ = open(fname)
words = []
counts = []
for line in f:
line = line.strip() #remove newline
data = line.split()
for word in data:
if word not in words:
words.append(word)
counts.append(1)
else: # update word
pos = words.index(word)
counts[pos] += 1|
f.close()

2/21/23 Compsci 101, Spring 2023 40

WOTO-2 Word Most Often
http:/ /bit.ly /101s23-0221-2

List Comprehension Syntax

ret = []
for V in LIST:
ret.append(V_EXP)

ret = []
for V in LIST:
if BOOL_EXP:
ret.append(V_EXP)

W) [ret = [V_EXP for V in LIST] |

B!

|ret = [V_EXP for V in LIST if BOOL_EXP] |

* Vis any variable: all list elements in order

* V_EXP is any expression, often use V

List Comprehension
Accumulator in one line

def onlyPos(nums):
ret = []
for n in nums:
if n > 0:
ret.append(n)
return ret

print(onlyPos([1,2,3,-1,-2,-3]))

return [n for n in nums if n > 0]

* List Comprehension

e We will use a complete, but minimal
version of list comprehensions, much

more is possible

List Comprehension Syntax

ret = []

for V in LIST:

E;>>|Pet =

[V_EXP for V in LIST] |

ret.append(V_EXP)

ret = []

for V in LIST:
if BOOL_EXP:
ret.append(V_EXP)

|ret = [V_EXP for V in LIST if BOOL_EXP] |

« if part optional - BOOL_EXP is a Boolean

expression usually using V

List Comprehension Examples

print([n*2 for n in range(6)])

print([n for nin range(10) ifn % 2==1])

WOTO-3 List Comprehension Examples
http:/ /bit.ly/101s23-0221-3

List Comprehension Examples

print([n/2 for n in range(10) if n % 2 == 0])

Ist = [‘banana’, ‘pineapple’, ‘apple’]
print([c for cinlIstif ‘n’inc])

Assignment 3: Transform

* Reading and writing files
* We've seen how to read, writing is similar
* Open, read, and close
* Open, write, and close - .write(..)

* Apply a function to every word in a file
* Encrypt and decrypt
* Respect lines, so resulting file has same structure

Encrypting and Decrypting

We give you:
e Transform.py
* Vowelizer.py - Removes vowels, then re-vowelize

You implement
* Pig Latin
* Caesar cipher

Challenge: Shuffleizer

Transform — Remove Vowels

First line of twain.txt:

The Notorious Jumping Frog of Calaveras County
Run Transform.py on twain.txt

Set as: doTransform("-nvw", Vowelizer.encrypt)
#doTransform("-rvw", Vowelizer.decrypt)

Results in new file: twain-nvw.txt

First line of twain-nvw.txt is:

Th Ntrs Jdmpng Frg f Clvrs Cnty

Concepts in Starter Code

* Global variables
* Generally avoided, but very useful
e Accessible in all module functions

* FileDialog and tkinter
* APl and libraries for building Ul and UX

* Docstrings for understanding!
& & Look at code

Transform — Get vowels back?

* First line of twain-nvw.txt:

Th Ntrs Jdmpng Frg f Clvrs Cnty

* Run Transform.py on twain-nvw.txt
* Set as: #doTransform("-nvw", Vowelizer.encrypt)
doTransform("-rvw", Vowelizer.decrypt)
* Results in new file: twain-nvw-rvw.txt

* First line of twain-nvw-rvw.txt is:

oath antares jumping fargo fe cleavers county

Transform — Vowels summary

* First line in twain.txt
The Notorious Jumping Frog of Calaveras County

* After removing vowels — “encrypt”

Th Ntrs Jmpng Frg f Clvrs Cnty

 After trying to re-vowelize — “decrypt”

oath antares jumping fargo fe cleavers county

