Compsci 101 Simple Sorting, Transform, Sets

Susan Rodger February 28, 2023

M is for ...

- Machine Learning
 - Math, Stats, CompSci: learning at scale
- Microsoft, Mozilla, Macintosh
 - Software that changed the world?
- Memory
 - Storage space in the computer
 - From 64 Kilobytes to 16 Gigobytes!
- Mouse, Mouse pad
 - Easier to navigate

Margot Shetterly

- Writer, Author of Hidden Figures
- Black Women NASA Scientists
- Gave a talk at Duke in 2016

Katherine Mary Dorothy Christine Johnson Jackson Vaughn Darden

Compsci 101, Spring 2023

Announcements

- Assignment 3 due Thursday, March 2
 - Sakai quiz due today
- Assignment 4 out Thursday!
- APT-4 is out and due Thursday March 9
 - Can use some as practice for exam
- Lab 7 Friday, there is a prelab available Thursday!

- Do not discuss APT Quiz 1 until grades posted!
 - A few have not take it yet due to travel or illness

PFTD

- Simple Sorting
- Solving an APT
- Assignment 4
- Sets

Exam 2 – in person – Tues, March 7

- Exam is in class on paper 10:15am
 - Need pen or pencil
- See materials under 3/7 date
 - Exam 2 Reference sheet part of exam
- Covers
 - topics /reading through Thursday
 - APTs through APT4
 - APT4 write code on paper, then type in
 - Labs through Lab 7
 - Lab 7 Parts 1-3
 - Assignments through Assignment 3

Exam 2 topics include ...

- List, tuples, list comprehensions
- Loops for loop, while loop, indexing with a loop
- Reading from a file
 - Converting data into a list of things
- Parallel lists
- Sets solving problems
- Dictionaries only reading them and understanding output, no problem solving
- No turtles on the exam!

Exam 2

- Exam 2 is your own work!
- No looking at others exam or talking to others
- You cannot use any notes, books, computing devices, calculators, or any extra paper
- Bring only a pen or pencil
- The exam has extra white space and has the Exam 2 reference sheet as part of the exam.
- Do not discuss any problems on the exam with others until it is handed back

Exam 2 – How to Study

- Practice writing code on paper!
- Rewrite an APT
- Try to write code from lecture from scratch
- Try to write code from lab from scratch
- Practice from old exams
- Put up old Sakai quizzes, but better to practice writing code
- Look at Exam 2 reference sheet when writing code!

Let's sort lists with sorted() function

- Want list elements in sorted order
 - Example: have list [17, 7, 13, 3]
 - Want list [3, 7, 13, 17], in order

- Built-in function: sorted(sequence)
 - Returns new list of sequence in sorted order
 - Sequence could be list, tuple, string

Example

```
lst = [6, 2, 9, 4, 3]
lsta = sorted(lst)
b = ['ko', 'et', 'at', 'if']
c = sorted(b)
b.remove('et')
b.append(6)
```

b.insert(1,5)

c = sorted(b)

Ist is [6, 2, 9, 4, 3]

Example

```
Ist is (7, 4, 1, 8, 3, 2)
lst = (7, 4, 1, 8, 3, 2)
lsta = sorted(lst)
b = ('ko', 'et', 'at', 'if')
c = sorted(b)
d = "word"
e = sorted(d)
f = 'go far'
g = sorted(f)
f = 'go far'
h = sorted(f.split())
```

Now, sort lists with .sort() list method

- Want to "change" list elements to sorted order
 - lst is [17, 7, 13, 3]
 - lst.sort()
 - Now **same** list lst is [3, 7, 13, 17], in order

- List method: list.sort()
 - List is modified, now in sorted order
 - There is NO return value
 - Only works with lists, can't modify strings, tuples

Compare sorted() with .sort()

Ista.sort()
a = [7, 2, 9, 1]
b = a.sort()

c = (5, 6, 2, 1)
c.sort()
d = "word"
d.sort()

WOTO-1 Sorting http://bit.ly/10123s-0228-1

APT - TxMsg

Problem Statement

Strange abbreviations are often used to write text messages on uncomfortable mobile devices. One particular strategy for encoding texts composed of alphabetic characters and spaces is the following:

 Spaces are maintained, and each word is encoded individually. A word is a consecutive string of alphabetic characters.

Specification

```
filename: TxMsg.py

def getMessage(original):
    """
    return String that is 'textized' version
    of String parameter original
    """

# you write code here
```

- If the word is composed only of vowels, it is written exactly as in the original message.
- If the word has at least one consonant, write only the consonants that do not have another consonant immediately before them. Do not write any vowels.
- The letters considered vowels in these rules are 'a', 'e', 'i', 'o' and 'u'. All other letters are considered
 consonants

For instance, "ps i love u" would be abbreviated as "p i lv u" while "please please me" would be abbreviated as "ps ps m". You will be given the original message in the string parameter original. Return a string with the message abbreviated using the described strategy.

Examples

Examples

1. "text message"

Returns "tx msg"

"aeiou bcdfghjklmnpqrstvwxyz"

Returns: "aeiou b"

WOTO-2 – TxMsg http://bit.ly/101s23-0228-2

Write helper function transform

- How?
- Use seven steps
- Work an example by hand

Why use helper function 'transform'?

- Structure of code is easier to reason about
 - Harder to develop this way at the beginning
 - Similar to accumulate loop, build on what we know

- We can debug pieces independently
 - What if transform returns "" for every string?
 - Can we test transform independently of getMessage?

Assignment 4: Guess Word

- We give you most of the functions to implement
 - Partially for testing, partially for guiding you
- But still more open ended than prior assignments
- If the doc does not tell you what to do:
 - Your chance to decide on your own!
 - Okay to get it wrong on the first try
 - Discuss with TAs and friends, brainstorm!
- Demo!

Python Sets

- Set unordered collection of distinct items
 - Unordered can look at them one at a time, but cannot count on any order
 - Distinct one copy of each

$$x = [5, 3, 4, 3, 5, 1]$$

y = set(x)

y.add(6) y.add(4)

List vs Set

List

- Ordered, 3rd item, can have duplicates
- Example: x = [4, 6, 2, 4, 5, 2, 4]

Set

- No duplicates, no ordering
- Example: y = set(x)

6 4 5 2

Both

- Add, remove elements
- Iterate over all elements

Python Sets

- Can convert list to set, set to list
 - Great to get rid of duplicates in a list

$$a = [2, 3, 6, 3, 2, 7]$$

a is [2, 3, 6, 3, 2, 7]

$$b = set(a)$$

$$c = list(b)$$

Python Set Operators

- Using sets and set operations often useful
- A | B, set union
 - Everything
- A & B, set intersection
 - Only in both
- B A, set difference
 - In B and not A
- A ^ B, symmetric diff
 - Only in A or only in B

SET A

List and Set, Similarities/Differences

	Function for List	Function for Set
Adding element	x.append(elt)	x.add(elt)
Size of collection	len(x)	len(x)
Combine collections	x + y	x y
Iterate over	for elt in x:	for elt in x:
Element membership	elt in x	elt in x
Index of an element	x.index(elt)	CANNOT DO THIS

- Lists are ordered and indexed, e.g., has a first or last
- Sets are not ordered, very fast, e.g., if elt in x

Creating and changing a set

```
colorList = ['red', 'blue', 'red', 'red', 'green']
colorSet = set(colorList)
smallList = list(colorSet)
colorSet.clear()
colorSet.add("yellow")
colorSet.add("red")
colorSet.add("blue")
colorSet.add("yellow")
colorSet.add("purple")
colorSet.remove("yellow")
```

smallList is

Set Operations – Union and Intersection

```
UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print(dukeColors | UScolors)
print(dukeColors & UScolors)
```

Set Operations - Difference

```
UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print(dukeColors - UScolors)
print(UScolors - dukeColors)
```

Set Operations – Symmetric Difference

```
UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print(dukeColors ^ UScolors)
print(UScolors ^ dukeColors)
```

Let's sort lists with sorted() function

- Built-in function: sorted(sequence)
 - Returns new list of sequence in sorted order
 - Sequence could be list, tuple, string
 - Sequence could be set!

```
a = set([3, 5, 2, 1, 7, 2, 5])
b = sorted(a)
```

WOTO-3 Sets http://bit.ly/101s23-0228-3