CompSci 101
Recursion

Susan Rodger
April 18, 2023
W is for ...

• World Wide Web
 • Where http meets tcp/ip?
• WiFi
 • We need and use this every day
• Windows
 • From OS to ...
Rediet Abebe

- CS PhD ‘19 Cornell
- Harvard Fellow 19
- Now a Carnegie Fellow 22
- UC Berkeley Assist. Prof
- Research: AI, Inequality and Social Impact
- Co-founded Black in AI
- Co-founded Mechanism Design for Social Good

“For the most part, algorithms didn’t create inequity and inequality, but the fact that we didn’t have people who were engaging with algorithms’ role was exacerbating this existing inequality. With any sort of social issue, an algorithm can make things a lot worse, or it can help you understand what’s going on better and try to move things in a positive direction.”
Announcements

- APT-7 due in one week!
- Assign 6 Recommender, due Thursday
 - Assign 6 Sakai quiz due tonight!
- Assign 7 Create due, Wednesday, April 26!
 - No penalty thru Sunday, April 30
- Lab 11 Friday, do prelab!

- Final Exam – 9am, Thursday, May 4
 - 3 hours, in person, covers topics through last day
Extra credit opportunity!

• Fill out survey under Exam 3 Bonus in Sakai tests and quizzes
 • If 65% fill out 1 extra credit point for Exam 3
 • If 75% fill out 1 additional extra credit point Exam 3

• Right now at 44%
More samples for Assignment 7
• **Recursion**
 • Technique for solving a problem by solving smaller problems
Recursion

• Solving a problem by solving similar but smaller problems
What's in a file-system Folder?
What's in a folder on your computer?

- Where are the **large** files?
- How do you **find them**?
- They take up space!
 - What’s the plan –
 1. Erase?
 2. Backup?
Hierarchy in Folder Structure

Level 0

Folder 1

Level 1

Folder 2

Folder 3

Level 2

Folder 4

Folder 5

Level 3

Folder 6

Base Case

Level 4

Compsci 101, Spring 2023
Recursion (idea) to print ALL files in a folder

- A folder can have sub folders and files
- A file cannot have sub files

```python
def visit(dirname):
    for inner in dirname:
        if isdir(inner):
            visit(inner)
        else:
            print(name(inner), size(inner))
```

Is that a directory? If not a directory, it will be a file
def bigfiles(dirmame, min_size):
 large = []
 for sub in os.listdir(dirmame):
 path = os.path.join(dirmame, sub)
 if os.path.isdir(path):
 subs = bigfiles(path, min_size)
 large.extend(subs)
 else:
 size = os.path.getsize(path)
 if size > min_size:
 large.append((path, size))
 return large

on Mac like this:
#bigs = bigfiles("/Users/Susan/Documents", 10000)
on Windows like this:
bigs = bigfiles("C:\\Users\\Susan\\Documents", 10000)
Finding Large Files questions
bit.ly/101s23-0418-1
The os and os.path libraries

• Libraries use an API to isolate system dependencies
 • C:\x\y # windows
 • /Users/Susan/Desktop # mac

• FAT-32, ReFS, WinFS, HFS, HSF+, fs
 • Underneath, these systems are different
 • Python API insulates and protects programmer

• Why do we have os.path.join(x,y)?
 • x = /Users/Susan/Documents
 • y = file1.txt
 • Output = /Users/Susan/Documents/file1.txt
Dissecting FileVisit.py

• How do we find the contents of a folder?
 • Another name for folder: directory

• How do we identify folder? (by name)
 • os.listdir(dirname) returns a list of files and folder

• Path is c:\user\rodger\foo or /Users/rodger/bar
 • os.path.join(dir,sub) returns full path
 • Platform independent paths

• What's the difference between file and folder?
 • os.path.isdir() and os.path.getsize()
Does the function call itself? No!

def visit(dirname):
 for inner in dirname:
 if isdir(inner):
 visit(inner)
 else:
 print(name(inner), size(inner))

• Is a file inside itself? No!
• Does pseudo code make sense?
 • Details make this a little harder in Python, but close!
Structure matches code

Find large files
If you see a folder,
1. Find the large files and subfolders
2. For the subfolders, repeat the process of finding large files and any other folders within that subfolder
3. Repeat the process until you reach the last folder

Compress or Zip a folder
If you see a folder,
1. Find the files and subfolders
2. For the subfolders, repeat the process of finding files and any other folders within that subfolder
3. At the last stage, start compressing files and move up the folder hierarchy
Structure matches code

• **Structure of list of lists**
 - Can also lead to processing a list which requires processing a list which ...

• **Is e in this list?**
 - How many lists do you have to look in?

```
[ [[a,b], [c,d]], [a, [b,c],d] ]
```
Structure matches Code

• Structure of expressions
 • Can also lead to processing an expressions which requires processing an expression...

• How do you evaluate expression?

\[(a \times (b + c + (d + e\times f))) + (a\times (b+d)))\]
Recursion Summary

• Make Simpler or smaller calls
 • Call a clone of itself with different input
• Must have a base case when no recursive call can be made
 • Example - The last folder in the folder hierarchy will not have any subfolders. It can only have files. That forms the base case
Mystery Recursion
Something Recursion
bit.ly/101s23-0418-3
Recursion in Pictures

• http://xkcd.com/543/