
CompSci 201, L5: Sets 
and Maps
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Announcements, Coming up
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• Today, Monday 1/30
• Project 0: Person201 due

• This Wednesday, 2/1
• APT2 due

• Next Monday, 2/6
• Project 1: NBody due (future projects will be 2 week)



Person in CS: 
Shafi Goldwasser

• Born 1959 NYC, Israeli family
• Started grad school in CS at UC Berkeley without 

knowing what she wanted to study. PhD 1984.
• 2012 Turing award winner (and 2 Gödel prizes) 

along with Silvio Micali for theoretical computer 
science in the creation of zero-knowledge proofs in 
theoretical cryptography.
• Professor and Director of Simons Institute for 

Theory of Computing.
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Wrapping up ArrayList: 
Analyzing Efficiency
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Algorithmic tradeoffs depend on 
the implementation
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Often, we are interested in how the efficiency of operations on 
data structures depends on scale. For an ArrayList with N 
values how efficient is…

• get(). Direct lookup in an Array. “Constant time” – does 
not depend on size of the list.

• contains(). Loops through Array calling .equals() at 
each element. Takes longer as list grows.

• size(). Returns value of an instance variable tracking size, 
does not depend on size of the list.

• add(). Depends.



How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:
1. Space left – One Array assignment statement, 

constant time, does not depend on list size.
2. No space left – Copy entire list! Takes N array 

assignments!

How often are we in the second slow case? Depends 
on how much we increase the Array size by in case 2.
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ArrayList Growth

Is twice as large (geometric 
growth)
• Must copy at sizes:
• 1, 2, 4, 8, 16, 32, …

• Total values copied looks 
like:
• 1+2+4+8+…+(N/4)+(N/2)

Has 1 more position 
(arithmetic growth)
• Must copy at sizes:
• 1, 2, 3, 4, …

• Total values copied 
looks like:
• 1+2+3+…+(N-2)+(N-1)
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Starting with a length 1 Array, if you add N elements 
one at a time and (when full) create a new Array that…

Algebra to our rescue!



ArrayList Growth and Algebra
Geometric growth
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Arithmetic series formula:
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Math and Expectations in 201

• Do not expect you to formally derive closed form 
expressions / give proofs.
• Do expect you to recognize:
• 1 + 2 + 4 +⋯+𝑁 is linear, grows like ≈ 𝑁.
• 1 + 2 + 3 +⋯+𝑁 is quadratic, grows like ≈ 𝑁*.

• Patterns like these show up again and again!

1/30/23 Compsci 201,Spring 2023, Sets Maps 9

Will make “like” more formal
with asymptotic analysis



Experiment to verify hypothesis
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Live Coding



ArrayList add (to end) is 
(amortized) efficient

According to the Java 17 API documentation: 
“The add operation runs in amortized constant time…” –
What does that mean?

• With geometric growth (e.g., double size of Array 
whenever out of space): Need a linear number of 
copies ∝ 𝑁 copies to add 𝑁 elements to ArrayList.

• The average number of copies per add is thus ∝ !
!
= 1, 

a constant that does not depend on 𝑁.
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ArrayList add to the front is 
not efficient
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Java 17 API documentation of add

Array representing List

15 12

Always requires shifting the entire Array, even if 
there is space available.

23

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html


Sets
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Set Review

• Stores UNIQUE elements
• Check if element in Set (using .contains())
• Add element to set (using .add())
• Returns false if already there

• Remove element (with .remove())
• Not guaranteed to store them in the order added
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Java API documentation

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Set.html


Set FAQs

1. How do I loop over a Set?

2. How do I convert between lists and sets?
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Enhanced for 
loop

addAll() method 
convenient, same as looping 

and adding one at a time



HashSet implementation of Set is 
very efficient

1/30/23 Compsci 201,Spring 2023, Sets Maps 16

Java API documentation

Constant time = does not 
depend on the number of 
values stored in the Set.

Under assumptions we 
will discuss next time

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html


Count Unique Words?
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For each word, constant 
time operation. “Linear 

complexity.”

For each word, must check 
all the words so far. 

“Quadratic complexity.”



TreeSet stores sorted

Two important implementations of Set interface:
• HashSet – Very efficient add, contains
• TreeSet – Nearly as efficient, keeps values sorted.
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Prints all unique 
characters in order.



HashSet and TreeSet
Implementations
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HashSet and HashMap both 
implemented with a hash 
table data structure, will 

discuss next time.

TreeSet and TreeMap both 
implemented using a special 

kind of binary tree, will discuss 
later in the course.



Maps
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Map pairs keys with values

1/30/23 Compsci 201,Spring 2023, Sets Maps 22

• Like an address book, lookup the value (address) of 
a key (person). Like a dictionary in Python.

• Map is an interface, must have methods like: 
• put(k, v): Associate value v with key k
• get(k): Return the value associated with key k 
• containsKey(k): Return true if key k is in the Map

Keys Values

Bob 101 E. Main St.

Naomi 200 Broadway

Xi 121 Durham Ave.



Implementations: HashMap, 
TreeMap

Two major implementations:
• HashMap: Very efficient put, get, containsKey
• TreeMap: Nearly as efficient, keeps keys sorted
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Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to 
implement this Map

Sorted by keys due to 
TreeMap



Check before you get

If you call .get(key) on a key not in the map, 
returns null, can cause program to crash.

Instead, check first with .containsKey().
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Adding “default” values

Often want a “default” value associated with new 
keys (examples: 0, empty list, etc.). Two options:
• .putIfAbsent(key, val)
• Check if does not contain key
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Updating maps
Single values
• .get() returns a copy of 

the value. 
• Must use .put() again 

to update.

Collection values
• .get() returns reference 

to collection.
• Update the collection 

directly. 
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Counting with a Map
In this example we count how many of each 
character occur in message.

1/30/23 Compsci 201,Spring 2023, Sets Maps 27

Comes in order because 
using TreeMap

Check if we have not 
seen c yet

Else get current value 
and increase



Problem-Solving with 
Sets and Maps
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Word Pattern Problem

Live Coding

https://leetcode.com/problems/word-
pattern/submissions/886368133/
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https://leetcode.com/problems/word-pattern/submissions/886368133/

