
CompSci 201, L5: Sets 
and Maps

1/30/23 Compsci 201,Spring 2023, Sets Maps 1



Announcements, Coming up

1/30/23 Compsci 201,Spring 2023, Sets Maps 2

• Today, Monday 1/30
• Project 0: Person201 due

• This Wednesday, 2/1
• APT2 due

• Next Monday, 2/6
• Project 1: NBody due (future projects will be 2 week)



Person in CS: 
Shafi Goldwasser

• Born 1959 NYC, Israeli family
• Started grad school in CS at UC Berkeley without 

knowing what she wanted to study. PhD 1984.
• 2012 Turing award winner (and 2 Gödel prizes) 

along with Silvio Micali for theoretical computer 
science in the creation of zero-knowledge proofs in 
theoretical cryptography.
• Professor and Director of Simons Institute for 

Theory of Computing.

1/30/23 Compsci 201,Spring 2023, Sets Maps 3



Wrapping up ArrayList: 
Analyzing Efficiency

1/30/23 Compsci 201,Spring 2023, Sets Maps 4



Algorithmic tradeoffs depend on 
the implementation

1/30/23 Compsci 201,Spring 2023, Sets Maps 5

Often, we are interested in how the efficiency of operations on 
data structures depends on scale. For an ArrayList with N 
values how efficient is…

• get(). Direct lookup in an Array. “Constant time” – does 
not depend on size of the list.

• contains(). Loops through Array calling .equals() at 
each element. Takes longer as list grows.

• size(). Returns value of an instance variable tracking size, 
does not depend on size of the list.

• add(). Depends.



How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:
1. Space left – One Array assignment statement, 

constant time, does not depend on list size.
2. No space left – Copy entire list! Takes N array 

assignments!

How often are we in the second slow case? Depends 
on how much we increase the Array size by in case 2.

1/30/23 Compsci 201,Spring 2023, Sets Maps 6



ArrayList Growth

Is twice as large (geometric 
growth)
• Must copy at sizes:
• 1, 2, 4, 8, 16, 32, …

• Total values copied looks 
like:
• 1+2+4+8+…+(N/4)+(N/2)

Has 1 more position 
(arithmetic growth)
• Must copy at sizes:
• 1, 2, 3, 4, …

• Total values copied 
looks like:
• 1+2+3+…+(N-2)+(N-1)

1/30/23 Compsci 201,Spring 2023, Sets Maps 7

Starting with a length 1 Array, if you add N elements 
one at a time and (when full) create a new Array that…

Algebra to our rescue!



ArrayList Growth and Algebra
Geometric growth
1 + 2 + 4 +⋯+ (𝑁/2)

= "
!"#

$%&! '()

2!

𝑁 − 1

Arithmetic growth
1 + 2 + 3 +⋯+ (𝑁 − 1)

= "
!")

'()

𝑖

= 𝑁(𝑁 − 1)/2

1/30/23 Compsci 201,Spring 2023, Sets Maps 8

Arithmetic series formula:

!
!"#

$

𝑎! =
𝑛
2 𝑎# + 𝑎$

Geometric series formula:

!
!"%

$

𝑟! =
1 − 𝑟$&#

1 − 𝑟



Math and Expectations in 201

• Do not expect you to formally derive closed form 
expressions / give proofs.
• Do expect you to recognize:
• 1 + 2 + 4 +⋯+𝑁 is linear, grows like ≈ 𝑁.
• 1 + 2 + 3 +⋯+𝑁 is quadratic, grows like ≈ 𝑁*.

• Patterns like these show up again and again!

1/30/23 Compsci 201,Spring 2023, Sets Maps 9

Will make “like” more formal
with asymptotic analysis



Experiment to verify hypothesis

1/30/23 Compsci 201,Spring 2023, Sets Maps 10

Live Coding



ArrayList add (to end) is 
(amortized) efficient

According to the Java 17 API documentation: 
“The add operation runs in amortized constant time…” –
What does that mean?

• With geometric growth (e.g., double size of Array 
whenever out of space): Need a linear number of 
copies ∝ 𝑁 copies to add 𝑁 elements to ArrayList.

• The average number of copies per add is thus ∝ !
!
= 1, 

a constant that does not depend on 𝑁.

1/30/23 Compsci 201,Spring 2023, Sets Maps 11



ArrayList add to the front is 
not efficient

1/30/23 Compsci 201,Spring 2023, Sets Maps 12

Java 17 API documentation of add

Array representing List

15 12

Always requires shifting the entire Array, even if 
there is space available.

23

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html


Sets

1/30/23 Compsci 201,Spring 2023, Sets Maps 13



Set Review

• Stores UNIQUE elements
• Check if element in Set (using .contains())
• Add element to set (using .add())
• Returns false if already there

• Remove element (with .remove())
• Not guaranteed to store them in the order added

1/30/23 Compsci 201,Spring 2023, Sets Maps 14

Java API documentation

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Set.html


Set FAQs

1. How do I loop over a Set?

2. How do I convert between lists and sets?

1/30/23 Compsci 201,Spring 2023, Sets Maps 15

Enhanced for 
loop

addAll() method 
convenient, same as looping 

and adding one at a time



HashSet implementation of Set is 
very efficient

1/30/23 Compsci 201,Spring 2023, Sets Maps 16

Java API documentation

Constant time = does not 
depend on the number of 
values stored in the Set.

Under assumptions we 
will discuss next time

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html


Count Unique Words?

1/30/23 Compsci 201,Spring 2023, Sets Maps 17

For each word, constant 
time operation. “Linear 

complexity.”

For each word, must check 
all the words so far. 

“Quadratic complexity.”



TreeSet stores sorted

Two important implementations of Set interface:
• HashSet – Very efficient add, contains
• TreeSet – Nearly as efficient, keeps values sorted.

1/30/23 Compsci 201,Spring 2023, Sets Maps 18

Prints all unique 
characters in order.



HashSet and TreeSet
Implementations

1/30/23 Compsci 201,Spring 2023, Sets Maps 19

HashSet and HashMap both 
implemented with a hash 
table data structure, will 

discuss next time.

TreeSet and TreeMap both 
implemented using a special 

kind of binary tree, will discuss 
later in the course.



Maps

1/30/23 Compsci 201,Spring 2023, Sets Maps 21



Map pairs keys with values

1/30/23 Compsci 201,Spring 2023, Sets Maps 22

• Like an address book, lookup the value (address) of 
a key (person). Like a dictionary in Python.

• Map is an interface, must have methods like: 
• put(k, v): Associate value v with key k
• get(k): Return the value associated with key k 
• containsKey(k): Return true if key k is in the Map

Keys Values

Bob 101 E. Main St.

Naomi 200 Broadway

Xi 121 Durham Ave.



Implementations: HashMap, 
TreeMap

Two major implementations:
• HashMap: Very efficient put, get, containsKey
• TreeMap: Nearly as efficient, keeps keys sorted

1/30/23 Compsci 201,Spring 2023, Sets Maps 23

Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to 
implement this Map

Sorted by keys due to 
TreeMap



Check before you get

If you call .get(key) on a key not in the map, 
returns null, can cause program to crash.

Instead, check first with .containsKey().

1/30/23 Compsci 201,Spring 2023, Sets Maps 24



Adding “default” values

Often want a “default” value associated with new 
keys (examples: 0, empty list, etc.). Two options:
• .putIfAbsent(key, val)
• Check if does not contain key

1/30/23 Compsci 201,Spring 2023, Sets Maps 25



Updating maps
Single values
• .get() returns a copy of 

the value. 
• Must use .put() again 

to update.

Collection values
• .get() returns reference 

to collection.
• Update the collection 

directly. 

1/30/23 Compsci 201,Spring 2023, Sets Maps 26



Counting with a Map
In this example we count how many of each 
character occur in message.

1/30/23 Compsci 201,Spring 2023, Sets Maps 27

Comes in order because 
using TreeMap

Check if we have not 
seen c yet

Else get current value 
and increase



Problem-Solving with 
Sets and Maps

1/30/23 Compsci 201,Spring 2023, Sets Maps 28



Word Pattern Problem

Live Coding

https://leetcode.com/problems/word-
pattern/submissions/886368133/

1/30/23 Compsci 201,Spring 2023, Sets Maps 29

https://leetcode.com/problems/word-pattern/submissions/886368133/

