
CompSci 201, L6: 
Hashing, HashMap, 

HashSet

2/1/23 Compsci 201, Spring 2023, Hashing 1



Announcements, Coming up

2/1/23 Compsci 201, Spring 2023, Hashing 2

• Today, Wednesday, 2/1
• APT 2 due

• Monday, 2/6
• Project 1: NBody due (future projects will be 2 week)

• Next Wednesday, 2/8
• APT 3 due



Set a breakpoint

• Start by setting a breakpoint in your code.
• Says “run the program until the first time this line 

executes, then pause to step line by line.”
• If you want to go line by line from the beginning? 

Set to first line in main.

2/1/23 Compsci 201, Spring 2023, Hashing 4



Debug options

Will see a menu like this:
• Continue: Go to next breakpoint
• Step over: Execute line, go to next. Run whole 

methods.
• Step into: Same as over unless method call. Steps 

into methods, jumping to first line of method code.
• Step out: Break out of method back to where called
• Restart: Start over again at first breakpoint
• Stop: Stop debugging session
2/1/23 Compsci 201, Spring 2023, Hashing 5

See the documentation for the tool

https://code.visualstudio.com/docs/java/java-debugging


Live Debugger Demo

• Live coding

2/1/23 Compsci 201, Spring 2023, Hashing 6



HashSet/Map efficiency

2/1/23 Compsci 201, Spring 2023, Hashing 7

Java API documentation

Constant time = does not 
depend on the number of 
values stored in the Set.

Under assumptions…

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html


Aside: Does constant time lookup 
(contains(), get(), etc.) matter?
• Social media: When you login, server needs to 

lookup to display the correct page for you.
• Billions of accounts! Look it up in a List? NO! Constant 

time lookup with hashing.

• Routing/directions application: Need to lookup 
roads from a given intersection.
• How many possible roads? Search through a list? NO! 

Constant time lookup with hashing.

• Could go on! 

2/1/23 Compsci 201, Spring 2023, Hashing 8



Big questions about hashing

Last class: Usage of API HashSet/HashMap.

Today:
1. How does a hash table work to implement 

HashMap/HashSet?
2. Why do .equals() and .hashCode() matter?
3. Why are the add(), contains(), put(), 

get(), and containsKey(), etc., all constant 
time (and under what assumptions)?

2/1/23 Compsci 201, Spring 2023, Hashing 9



Hash Table Concept

• Implement HashMap with an Array also
• Of <key, value> pairs

• Rather than adding to position 0, 1, 2, …
• Big idea: Calculate hash (an int) of key to 

determine where to store & lookup

• Java OOP: Will use the hashCode() method 

of the key to get the hash

• Same hash to put and get, no looping over 
list

2/1/23 Compsci 201, Spring 2023, Hashing 10

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

hash(“ok”)== 4



HashMap methods at a high level 
Always start by getting the hash = 
Math.abs(key.hashCode()) % list.size()

• put(key, value)
• Add (<key, value>) to list at index hash
• If key already there, update value

• get(key)
• Return value paired with key at index hash 

position of list
• containsKey(key)
• Check if key exists at index hash position of 

list

2/1/23 Compsci 201, Spring 2023, Hashing 11

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

Absolute value and % (remainder when 
dividing by) list size ensures valid index



HashMap put/get example

• Suppose we have the <key, value> 
pair <“cs”, 201>.
• hash is Math.abs(“cs”.hashCode()) 
% 8 which is 0.

• put(“cs”, 201) in position 0
• get(“cs”) by looking up position 0, 

returning the value

2/1/23 Compsci 201, Spring 2023, Hashing 12

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

<“cs”, 201>

return 201



Collisions

• Suppose now we want to put 
<“fain”, 104>.

• hash=Math.abs(“fain”.hashCode(
)) % 8 which is 0.

• put(“fain”, 104) in position 0

• But <“cs”, 201> is already stored at 
position 0! Call this a collision.

2/1/23 Compsci 201, Spring 2023, Hashing 13

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

<“cs”, 201>



Dealing with collisions: concepts

• Think of the hash table as an Array 
of “buckets”.
• Each bucket can store multiple 

<key, value> pairs.
• put(key, value)
• Add to hash index bucket

• Update value if key already in bucket

• get(key)
• Loop over keys in hash index bucket

• Return value of one that equals() key 

2/1/23 Compsci 201, Spring 2023, Hashing 14

0

1

2

3

4

5

6

7

<“cs”, 201>
<“fain”, 104>

<“hi”, 5>

<“ok”, 3>



Dealing with collisions: details

• Bucket is really another 
list.

• Hash table is really an 
array of of lists of <key, 
value> pairs.

• We call this technique 
for dealing with 
collisions chaining.

2/1/23 Compsci 201, Spring 2023, Hashing 15

Illustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=6471915



WOTO
Go to duke.is/mxnt5

2/1/23 Compsci 201, Spring 2023, Hashing 16

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/mxnt5


* Required

* This form will record your name, please fill your name.

L06-WOTO1-Hash

NetID * 1.

Enter your answer

Take the same amount of time to run

Have the same number of operations

Runtimes do not depend on number of elements of the Set/Map

HashSet and HashMap have constant time add, contains, put, get, and 
containsKey operations. That means that these methods... * 

2.

Brandon Fain



A <key, value> pair

A list of keys

A list of values

A list of <key, value> pairs

What is stored in each "bucket" in a hash table / HashMap? * 3.

Brandon Fain



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

0

1

2

3

4

5

6

7

8

9

10

11

12

Suppose we want to put <s, 1> into a HashMap where s.hashCode() 
= 12. If our hash table has 4 buckets, in which bucket will we store 
<s, 1>? * 

4.

Brandon Fain



Where does equals() come in?

• If multiple <key, value> pairs in same bucket, need 
to know which to get() or update on a put() call.

• Always the pair where the key in the bucket 
equals() the key we put() or get().

• Need equals() to work correctly for the key type
• String keys? Integer? Already implemented for you.

• Storing objects of a class you write? Need to override 

and implement equals().

2/1/23 Compsci 201, Spring 2023, Hashing 17



What happens without equals()? 
Hashing cats

2/1/23 Compsci 201, Spring 2023, Hashing 18

Even though all cat objects have 
the same hashCode() of 0 and 

so go to the same bucket…

And these 2 Cat objects 
have the same values

Prints 2, cannot detect 
duplicates without 

equals()



hashCode Correctness

• Need hashCode() to work correctly for the key 
type.
• String keys? Already implemented for you.

• Storing objects of classes you write? Need to override 

and implement hashCode().

• What makes a hashCode() “correct” (not 
necessarily efficient)?
• Any two objects that are equals() should have the 

same hashCode().

2/1/23 Compsci 201, Spring 2023, Hashing 19



What happens without 
hashCode()? Hashing more cats

2/1/23 Compsci 201, Spring 2023, Hashing 20

Fixed equals() but removed 
hashCode(), using default

Still prints 2! 



Cat with equals() and 
hashCode() 

2/1/23 Compsci 201, Spring 2023, Hashing 21

equals() if have same 
name and age

Uses String hashCode() of name 
concat with age, if equals() will 

have same hashCode()



Aside: toString()
Don’t need for hashing, but toString() method 
allows “nice” printing.

2/1/23 Compsci 201, Spring 2023, Hashing 22

toString() method used for 
printing, including inside a Collection

Prints [kirk]
instead of 
[Cat@...]



What is the String hashCode()?

2/1/23 Compsci 201, Spring 2023, Hashing 23

Java API String 
documentation

Remember how hashCode() is 
used to get the bucket index.

Interprets each character as an 
int, does arithmetic.

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html


Revisiting Hashing Efficiency

• Real runtime of get(), put(), and 
containsKey() =
• Time to get the hash
• + Time to search over the hash index “bucket”, 

calling .equals() on everything in the bucket

àHashMaps faster with more buckets

2/1/23 Compsci 201, Spring 2023, Hashing 24

Constant, does not depend on 
number of pairs in Map

Depends on 
number of pairs 

per bucket



“correct” but inefficient 
hashCode()

Correctness requirement: Any 
.equals() keys should have the 
same hashCode().

Still satisfies, but not good…
Stores everything in the first bucket! 
No more efficient than a list!

2/1/23 Compsci 201, Spring 2023, Hashing 25



Correct and efficient 
hashCode()

From the Java 17 API documentation:
• Correctness: “If two objects are 

equal…hashCode…must produce the same integer 
result.”
• Efficiency: “…producing distinct integer results for 

unequal objects may improve the performance of 
hash tables.”

• String hashCode() satisfies both

2/1/23 Compsci 201, Spring 2023, Hashing 26

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html


Cat hashCode() revisited

2/1/23 Compsci 201, Spring 2023, Hashing 27

equals() if have same 
name and age

If equals() will have 
same hashCode() If unequal? Unlikely (but 

possible!) to have the 
same hashCode().



Simple uniform hashing 
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption: Probability 
two random (unequal) keys hash to same bucket is 
just 1/M.
• Spread of pairs to buckets looks random (but is not).

• Ways to design such hash functions, not today

• We will make the assumption to analyze efficiency in 

theory, can verify runtime performance in practice

2/1/23 Compsci 201, Spring 2023, Hashing 28



Implications of SUHA

• Expected number of pairs per bucket under SUHA? 
N/M [N pairs, M buckets].
• Stronger statements are true: Very high probability 

that a bucket has approximately N/M pairs.
• Runtime implication?
• Time to get the hash
• Time to search over the hash index “bucket” 
• Calling .equals() on everything in the bucket

2/1/23 Compsci 201, Spring 2023, Hashing 29

Constant, does not depend on N or M.

Expect ~ N/M pairs to search



Memory/Runtime Tradeoff

• N pairs, M buckets, assuming SUHA / good hashCode()

• Case 1: N >> M – too many pairs in too few buckets

• Runtime inefficient

• Case 2: M >> N – too many buckets, not many pairs

• Runtime efficient, NOT memory efficient 

• Case 3: M slightly larger than N – sweet spot

• Runtime efficient, memory usage slightly more than an 

array/ArrayList

2/1/23 Compsci 201, Spring 2023, Hashing 30



Load Factor and HashMap Growth

• N pairs, M buckets

• Load factor = maximum N/M ratio allowed
• Java default is 0.75

• Whenever N/M exceeds the load factor?
• Create a new larger table, rehash/copy everything

• Double the size, geometric growth pattern for amortized 

efficiency just like ArrayList!

• Called resizing

2/1/23 Compsci 201, Spring 2023, Hashing 31



Hash table resizing 

2/1/23 Compsci 201, Spring 2023, Hashing 32

0

1

2

3

4

5

6

7

0

1

2

3

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>
Resizing



WOTO
Go to duke.is/8khxt

2/1/23 Compsci 201, Spring 2023, Hashing 33

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/8khxt


* Required

* This form will record your name, please fill your name.

L06-WOTO2-Hashing

NetID * 1.

Enter your answer

equals() for the key objects

equals() for the value objects

hashCode() for the key objects

hashCode() for the value objects

Which methods must be correctly implemented in order for a 
HashSet/HashMap to function correctly? Select all that apply. * 

2.

Brandon Fain

Brandon Fain



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

Incorrect behavior, returning the wrong value

Correct and efficient behavior, constant time

Correct and inefficient behavior, comparable to contains in ArrayList

None of the above

Suppose you store one million (1,000,000) Keys in a HashSet where 
the hashCode() of all the keys returns 0 but none of the keys are 
equal to each other (according to equals()). What would you expect 
when calling contains() on the HashSet? * 

3.

Constant time

Amortized constant time

Expected constant time

Amortized expected constant time

Suppose a HashSet/Map performs a resizing operation to double the 
number of buckets every time it reaches a load factor of 1. Assume a 
good implementation of hashCode() for the keys / the simple uniform 
hashing assumption. When performing N add/put operations with 
unique keys, the best characterization of the runtime complexity of 
add/put is... * 

4.

Brandon Fain

Brandon Fain



Revisiting guarantees

Constant amortized time operations in expectation under 
the simple uniform hashing assumption (practically, 
assuming the hash function distributes unequal keys).

2/1/23 Compsci 201, Spring 2023, Hashing 34

Java API documentation

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

