
 

Abstract—In many applications of percolation theory, 

checking the establishment of the spanning clump/cluster of 

overlapping particles that spans all over the field is an essential 

task. Given a percolation theory field modeled by two-

dimensional lattice (matrix), in this paper, we present an 

algorithm which determines if there is a spanning clump in lattice 

or not. The spanning clump is the largest cluster in the field 

which that spans the entire network vertically, horizontally or 

both. Due to wide range of properties and applications of cellular 

automata such as simplicity and distributedness, we use them in 

our algorithm. The proposed algorithm is simple but yet useful 

and also could be run in a parallel / multicore machines. Also, the 

approach of the algorithm could be extended to higher 

dimensions. 

 

I. INTRODUCTION 

he concept of continuum percolation, originally due to 

Gilbert [1], is to find the critical density of a Poisson point 

process at which an unbounded connected component almost 

surely appears so that the network can provide long-distance 

multihop communication. Since then, Gilbert’s model has 

become the basis for studying continuum percolation in 

different technical fields such as wireless networks e.g. [2] and 

[3]. Recently, percolation theory has been considered by 

researchers to be used to examine coverage and connectivity 

in sensor networks too [4]-[12]. 

In general, percolation theory could be classified to two 

models called discrete percolation [13] and continuum 

percolation [14]. In discrete percolation (also called the lattice 

model), the sites of the lattice are close or open due to 

probability 𝑝 and may have different tessellation such as 

square, triangle, honeycomb and etc. While in continuum 

percolation, the positions of the sites are randomly distributed 

and thus, there is no need to have a different analysis for each 

of these regular lattices. While in discrete percolation theory, 

we are interested in finding the critical probability denoted 

by  𝑝𝑐 in which percolation occurs, in continuum percolation 

we are interested in finding the critical density denoted 

by  𝜆𝑐  at which an infinite or large clump of overlapping 

objects first appears that spans the entire network. The density 

𝜆𝑐  is the critical value for the density 𝜆 such that there exists 

no such clump of overlapping objects almost surely when 𝜆 <
𝜆𝑐 (the system is said to be in the subcritical phase), but it 
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exists almost surely when 𝜆 > 𝜆𝑐  (the system is said to be 

supercritical) and we say that percolation occurs. 

In most of research in continuum percolation, the critical 

density of different shapes will be calculated by huge Monte 

Carlo method [15]. Therefore using an algorithm to test the 

occurrence of percolation in the network is an essential and 

important task of such research. 

In this paper, we present an algorithm to check the 

establishment of spanning clump (percolation) in a two-

dimensional lattice by using cellular automata. The proposed 

algorithm works locally and could be executed 

distributed/parallel which makes it suitable for huge data 

experiments. Also, the approach of the algorithm could be 

extended to higher dimensions. 

The remainder of this paper is organized as follows: section 

II reviews related works, section III presents a brief 

description on cellular automata and its features, section IV 

presents the approach of our algorithm and finally section V 

concludes the paper. 

 

II. RELATED WORKS 

The proposed algorithms for percolation usually are related 

to finding out the percolation probabilities as a framework for 

Monte Carlo simulations. In other words, these algorithms try 

to estimate the critical probabilities in which percolation starts 

for different materials. As an instance, Hoshen et al. [16] 

proposed an extended multiple labeling technique for site-

bond percolation problem with for square and triangular 

lattices. The site-bond approach is useful when a percolation 

process cannot be exclusively described in the context of pure 

site or pure bond percolation. 

In [17], authors obtained precise estimates for the fractal 

dimensions of the sample spanning cluster, the backbone, and 

the minimal path in order to identify the universality classes of 

four different Invasion percolation (IP) processes (site and bond 

IP, with and without trapping) by using efficient algorithms 

for simulating invasion percolation. In two dimensions IP is 

characterized by two universality classes, one each for IP 

without trapping, and site and bond IP with trapping. In a 

three-dimensional site IP with and without trapping is in the 

universality class of random percolation, while bond IP with 

trapping is in a distinct universality class, which may be the 

same as that of optimal paths in strongly disordered media. 

Also, in [18], Masson et al. presented a computationally fast 
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Invasion Percolation (IP) algorithm. IP is a numerical 

approach for generating realistic fluid distributions for quasi-

static immiscible fluid invasion in porous media. The 

algorithm proposed uses a binary-tree data structure to identify 

the site connected to the invasion cluster that is the next to be 

invaded and gravity is included. Also, trapping is not 

explicitly treated in the numerical examples but can be added.  

In [19], authors presented a recursive algorithm for 

sampling properties of physical clusters such as size 

distribution and percolation. The approach can be applied to 

any system with periodic boundary conditions, given a spatial 

definition of a cluster. The recursive cluster identification 

algorithm is somewhat slower than the iterative methods at 

low volume fraction but is at least as fast at high densities. The 

percolation analysis, however, is considerably faster using 

recursion, for all systems studied. In other research [20], 

authors presented an efficient algorithm for finding the 

current-carrying backbone in the planar site percolation 

model. It finds the backbone in speed to be almost four times 

as high as depth-first-search algorithms. Similar algorithm has 

been introduced in comparison to commonly-used Tarjan's 

depth-first-search algorithm in [21]. 

In [22], authors proposed a stochastic cellular automata 

model for wild-land fire spread dynamics under flat terrain 

and no-wind conditions. They modeled the dynamics of fire 

spread as a stochastic event with an effective fire spread 

probability S which is a function of three probabilities: the 

proportion of vegetation cells across the lattice, the probability 

of a burning cell become burnt, and the probability of the fire 

spread from a burning cell to a neighbor vegetation cell. 

 

III. CELLULAR AUTOMATA 

A cellular automaton (CA) is a rule-based computing 

machine, which was first proposed by von Newmann in early 

1950s and systematic studies were pioneered by Wolfram in 

1980s. Since a cellular automaton consists of space and time, 

it is essentially equivalent to a dynamical system that is 

discrete in both space and time. The evolution of such a 

discrete system is governed by certain updating rules rather 

than differential equations. Although the updating rules can 

take many different forms, most common cellular automata 

use relatively simple rules. 

Formally, cellular automata are classified to three categories 

[23]. 

 

1. Finite-State Cellular Automata 

In general, we can define a finite-state cellular automaton 

with a transition rule 𝐺 = [𝑔𝑖𝑗,…,𝑙], (𝑖, 𝑗, … , 𝑙 = 1,2, … , 𝑁) from 

one state Φ𝑡 = [𝜙𝑖𝑗,…,𝑙
𝑡 ] at time level 𝑛 to a new state Φ𝑡+1 =

[𝜙𝑖𝑗,…,𝑙
𝑡+1 ] at a new time step 𝑛 + 1. The value of subscript 

(𝑖, 𝑗, . . . , 𝑙) denotes the dimension, 𝑑, of the cellular automaton. 

Therefore, a CA in the 𝑑-dimensional space has 𝑁𝑑 cells. For 

the 2D case, this can be written as 

𝐺 = Φ𝑡 → Φ𝑡+1, 𝑔𝑖𝑗: 𝜙𝑖𝑗
𝑡 → 𝜙𝑖𝑗

𝑡+1,            (𝑖, 𝑗 = 1,2, … , 𝑁). 

In the case of sum-rule with 4𝑟 +  1 neighbors, this 

becomes 

𝜙𝑖𝑗
𝑡+1 = 𝐺 ( ∑ ∑ 𝑎𝛼𝛽𝜙𝑖+𝛼,𝑗+𝛽

𝑡

𝑟

𝛽=−𝑟

𝑟

𝛼=−𝑟

),      (𝑖, 𝑗 = 1,2, … , 𝑁), 

where 𝑎𝛼𝛽  (𝛼, 𝛽 =  ±1, ±2, … , ±𝑟) are the coefficients. The 

cellular automata with fixed rules defined this way are 

deterministic cellular automata. In contrast, there exists 

another type, namely, the stochastic cellular automata that 

arise naturally from the stochastic models for natural systems. 

 

2. Stochastic Cellular Automata 

When using cellular automata to simulate the phenomena 

with stochastic components or noise such as percolation and 

stochastic process, the more effective way is to introduce 

some probability associated with certain rules. Usually, there 

is a set of rules and each rule is applied with a probability. 

Another way is that the state of a cell is updated according 

to a rule only if certain conditions are met or certain values are 

reached for some random variables. For example, the rule for 

2D a cellular automaton 𝑔(𝜙𝑖𝑗
𝑡 ) = 𝜙𝑖𝑗

𝑡+1 is applied at a cell 

only if a random variable 𝑣 ≤ Γ(𝜙𝑖𝑗
𝑡 ) where the function Γ ∈

[0, 1]. At each time step, a random number 𝑣 is generated for 

each cell (𝑖, 𝑗), and the new state will be updated only if the 

generated random number is greater than Γ, otherwise, it 

remains unchanged. Cellular automata constructed this way 

are called stochastic or probabilistic cellular automata. 

 

3. Reversible Cellular Automata 

A cellular automaton with an updating rule 𝑔(𝜙𝑖𝑗
𝑡 ) = 𝜙𝑖𝑗

𝑡+1 

is generally irreversible in the sense that it is impossible to 

know the states of a region such as all zeros were the same at a 

previous time step or not. However, certain class of rules will 

enable the automata to be reversible. For example, a simple 

finite difference (FD) scheme for a dynamical system 

𝑢(𝑡 + 1) = 𝑔[𝑢(𝑡)] − 𝑢(𝑡 − 1) 

or 

𝑢(𝑡 − 1) = 𝑔[𝑢(𝑡)] − 𝑢(𝑡 + 1), 
is reversible since for any function 𝑔(𝑢), one can compute 

𝑢(𝑡 + 1) from 𝑢(𝑡 ) and 𝑢(𝑡 −  1), and invert 𝑢(𝑡 −  1) from 

𝑢(𝑡 ) and 𝑢(𝑡 +  1). The automaton rule for 2D reversible 

automata can be similarly constructed as 

𝑢𝑖,𝑗
𝑡+1 = 𝑔(𝑢𝑖,𝑗

𝑡 ) − 𝑢𝑖,𝑗
𝑡−1, 

together with appropriate boundary conditions such as fixed-

state boundary conditions. 

 

IV. THE ALGORITHM: PADSN 

1. The Model 

The model is based on the spatially explicit representation 

and the landscape is depicted as a square and two-dimensional 

lattice (a typical square lattice has been shown in Fig. 1). Each 

cell is defined by: 
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i. Its discrete position (𝑖, 𝑗) in the lattice, where 𝑖 =
1, … , 𝑙 is the row and 𝑗 = 1, … , 𝑙 is the column. 

ii. The finite set of internal states variables that 

describes the possible behavior of the cells in a 

given time step 𝑡 which are 𝑆(𝑖,𝑗)
𝑡 ∈ [𝐵, 𝑂, 𝑃] where 

B means the cell is blocked and nothing can 

percolate through this cell. These cells are shown 

by black shades in Fig. 1. O means this cell is open 

(not blocked) and could be percolated, but it has 

not been percolated so far. These cells are shown 

by white shades in Fig. 1. P means this cell was an 

open cell and is percolated now. These cells are 

shown by blue shades in Fig. 1. 

iii. The set of finite Moore neighborhood cells 𝛮(𝑖, 𝑗), 

where is the Moore neighborhood as shown in Fig. 

2 and represents the neighborhood relations in the 

model and comprises the eight cells surrounding 

(𝑖∗, 𝑗∗) of a central cell (𝑖, 𝑗) according with the 

definition following definition: 

𝛮(𝑖, 𝑗) = {(𝑖∗, 𝑗∗): |𝑖 − 𝑖∗| ≤ 1, |𝑗 − 𝑗∗| ≤ 1} 

iv. The transition function that calculates the future 

cell state as a function of the present state of the 

cell and presents neighborhood cell states 

𝑓: 𝑆(𝑖,𝑗)
𝑡 × 𝑆𝑁(𝑖,𝑗)

𝑡 → 𝑆(𝑖,𝑗)
𝑡+1 where the time 𝑡 is also 

represented by discrete values or time steps. Thus, 

the time evolution of the model is driven by the 

interaction between the cell states and the cell 

neighborhood states. Starting from a given 

configuration of cells initial states, the cellular 

automaton self-replicates the sequent cell states. 

The cellular automata model is stochastic because 

the state transition function is performed according 

to probabilities values. 

 

        

        

        

        

        

        

        

        

 

Fig. 1. A typical 8 × 8 lattice. Black shades represents the blocked cells, white 

shades represents the open cells and blue shades represents the percolated 

cells. 

 

2. State Transition 

As it mentioned in previous section, we use the Moore 

neighborhood model in our algorithm. As it is shown in Fig. 2, 

each cell has eight neighbors. If current state of a cell in 

blocked, nothing could change its state and it will keep its 

state forever (see Fig. 3(a)).  

 

(i-1,j-1) (i-1,j) (i-1,j+1) 

(i,j-1) (i,j) (i,j+1) 

(i+1,j-1) (i+1,j) (i+1,j+1) 

 

Fig. 2. The Moore neighborhood model which is used in the algorithm. 

 

Also, if the current state of the cell is percolated, nothing 

can change its state (see Fig. 3(b)). But if the current state of 

the cell is open and there is at least one neighbor with 

percolated state, then its state will be changed to percolated 

(see Fig. 3(b)). 

 

 

a) State transition for blocked status. 
 

 

b) State transition for open and percolated status. 

 
Fig. 3. State transition of cellular automata in our algorithm. 

 

3. The algorithm 

The simplest data structure for representing a lattice is 

matrix. But as it is shown in Fig. 3, the only state transition 

will be happened from open state to percolated state and 

nothing will be done for blocked and percolated states. 

Therefore, it does not need to check all cells and only 

checking the conditions of cell with open state is enough to 

progress the algorithm. Therefore, a preprocess phase will be 

done on the matrix to insert all cells with open state into a 

linked list. Then, state of each cell in this linked list will be 

updated by using mentioned rules in previous section. At the 

beginning some cells with open state in the edge of lattice will 

be turned to percolated. If state of a cell changed to 

percolated, it will be removed from linked list. Fig. 4 shows 

the pseudo code of the algorithm. 

percolated 

Always 

open 

No percolated 
neighbor 

At least one percolated neighbor 

blocked 

Always 
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The algorithm will be terminated in one of the two 

following situations: 

 When the current cell is an edge cell in the lattice and state 

transition from open state to percolated state has been done in 

this iteration, it means a percolation clump from other side of 

lattice to this side exists. In other words, percolation occurred. 

In this situation, the algorithm will be terminated and checking 

other cells is not needed. 

 When all cells in linked list passed and no state transition 

could be done on these cells. It means there is not any other 

open cell in the lattice which its state could be changed 

anymore. This tells that there is not any spanning clump and 

algorithm will be terminated.  

Fig. 5 shows all phases of the algorithm on a sample 8 × 8  

lattice. 

4. Complexity of the algorithm 

In this section, we discuss on complexity of the proposed 

algorithm. Given a 𝑛 × 𝑛 lattice with 𝑚 open cells, obviously, 

the best case will happen when there is a chain of 𝑚 cells 

which spans the lattice as it is shown in Fig. 6. Therefore, the 

complexity for best case of the algorithm will be Ω(𝑚). Also, 

the worst case of the algorithm is happened when the lattice is 

like Fig. 7. As it seen, number of phases to complete the 

algorithm will be as 
 

(
𝑛

2
× (𝑛 − 1)) + 1 =  𝑂(𝑛2) 

 

For each phase at most 𝑚 cells in linked list must be 

processed. Therefore, in worst case the complexity of the 

algorithm will be 𝑂(𝑚𝑛2). 

% Pseudo code of Percolation Algorithm based on Cellular Automata (PACA) 

 

function PACA(𝐿𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡, 𝐿𝑎𝑡𝑡𝑖𝑐𝑒) 
    for all 𝑐𝑒𝑙𝑙(𝑖, 𝑗) in 𝐿𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡 

        if 𝑐𝑒𝑙𝑙(𝑖, 𝑗) has at least one neighbor with 𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑒𝑑 state in 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 
           change the state of 𝑐𝑒𝑙𝑙(𝑖, 𝑗) to 𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑑 
           if 𝑐𝑒𝑙𝑙(𝑖, 𝑗)  is a edge cell in 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 
               return “there is a spanning clump in the lattice!” 

           end if 

        end if 

    end for 

    return “there is not any spanning clump in the lattice!” 

end function 

 

Fig. 4.  . The proposed algorithm. 
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Phase 7 
 

Phase 8 

Fig. 5. Phases of the algorithm on a sample 8 × 8 lattice. As seen, at the latest phase (8th) of our sample, state of a cell in the other edge of lattice changes to 

percolated and due to first condition, algorithm will be terminated. 
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Fig. 6. Best case for the algorithm. 

 

        

        

        

        

        

        

        

        

 
Fig. 7. Worst case for the algorithm. 
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Fig. 8. Decompose of lattice to execute algorithm parallel. 

 

TABLE I 
INDEXES OF DECOMPOSED SLICES 

𝑟 =  𝑘2 Row indexes Col indexes 

1 1 to 5 1 to 5 

2 4 to 8 1 to 5 

3 1 to 5 4 to 8 

4 4 to 8 4 to 8 

 

5. Distributedness 

As it is mentioned in previous sections, the proposed 

algorithm could be executed distributed or parallel. Assuming 

that we have a single original lattice which all threads can 

access it. The lattice could be decomposed to some equal 

slices and then, an instance of algorithm code be run for each 

slice separately. 

Consider Fig. 8. As it is shown, a 𝑛 × 𝑛 lattice could be 

broken to 𝑟 = 𝑘2 slices with 𝑚 × 𝑚 cells (where 𝑚 =
𝑛

𝑘
). In 

our example (Fig. 8), we decomposed a 8 × 8 lattice to 4 

slices with 4 × 4 cells. To consider the border effects of each 

slice in neighboring slices, in each iteration, the algorithm read 

(𝑚 + 2) × (𝑚 + 2) cells from the lattice (if applicable). In 

other word, the surrounding row and column of a slice which 

put into other neighboring slices affect the results and must be 

considered. The indexes of each slices in Fig. 8 which must be 

read in each phase have been shown in table I. 

 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we introduced an algorithm based on cellular 

automata to check the establishment of spanning clump 

(percolation) in a two-dimensional The proposed algorithm 

works locally and could be executed distributed/parallel which 

makes it suitable for huge data experiments. The order of 

proposed algorithm in worst case is 𝑂(𝑚𝑛2). Moreover, the 

approach of the algorithm could be extended to higher 

dimensions. 
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