

Abstract—In many applications of percolation theory,

checking the establishment of the spanning clump/cluster of

overlapping particles that spans all over the field is an essential

task. Given a percolation theory field modeled by two-

dimensional lattice (matrix), in this paper, we present an

algorithm which determines if there is a spanning clump in lattice

or not. The spanning clump is the largest cluster in the field

which that spans the entire network vertically, horizontally or

both. Due to wide range of properties and applications of cellular

automata such as simplicity and distributedness, we use them in

our algorithm. The proposed algorithm is simple but yet useful

and also could be run in a parallel / multicore machines. Also, the

approach of the algorithm could be extended to higher

dimensions.

I. INTRODUCTION

he concept of continuum percolation, originally due to

Gilbert [1], is to find the critical density of a Poisson point

process at which an unbounded connected component almost

surely appears so that the network can provide long-distance

multihop communication. Since then, Gilbert’s model has

become the basis for studying continuum percolation in

different technical fields such as wireless networks e.g. [2] and

[3]. Recently, percolation theory has been considered by

researchers to be used to examine coverage and connectivity

in sensor networks too [4]-[12].

In general, percolation theory could be classified to two

models called discrete percolation [13] and continuum

percolation [14]. In discrete percolation (also called the lattice

model), the sites of the lattice are close or open due to

probability 𝑝 and may have different tessellation such as

square, triangle, honeycomb and etc. While in continuum

percolation, the positions of the sites are randomly distributed

and thus, there is no need to have a different analysis for each

of these regular lattices. While in discrete percolation theory,

we are interested in finding the critical probability denoted

by 𝑝𝑐 in which percolation occurs, in continuum percolation

we are interested in finding the critical density denoted

by 𝜆𝑐 at which an infinite or large clump of overlapping

objects first appears that spans the entire network. The density

𝜆𝑐 is the critical value for the density 𝜆 such that there exists

no such clump of overlapping objects almost surely when 𝜆 <
𝜆𝑐 (the system is said to be in the subcritical phase), but it

* khanjary@srbiau.ac.ir

exists almost surely when 𝜆 > 𝜆𝑐 (the system is said to be

supercritical) and we say that percolation occurs.

In most of research in continuum percolation, the critical

density of different shapes will be calculated by huge Monte

Carlo method [15]. Therefore using an algorithm to test the

occurrence of percolation in the network is an essential and

important task of such research.

In this paper, we present an algorithm to check the

establishment of spanning clump (percolation) in a two-

dimensional lattice by using cellular automata. The proposed

algorithm works locally and could be executed

distributed/parallel which makes it suitable for huge data

experiments. Also, the approach of the algorithm could be

extended to higher dimensions.

The remainder of this paper is organized as follows: section

II reviews related works, section III presents a brief

description on cellular automata and its features, section IV

presents the approach of our algorithm and finally section V

concludes the paper.

II. RELATED WORKS

The proposed algorithms for percolation usually are related

to finding out the percolation probabilities as a framework for

Monte Carlo simulations. In other words, these algorithms try

to estimate the critical probabilities in which percolation starts

for different materials. As an instance, Hoshen et al. [16]

proposed an extended multiple labeling technique for site-

bond percolation problem with for square and triangular

lattices. The site-bond approach is useful when a percolation

process cannot be exclusively described in the context of pure

site or pure bond percolation.

In [17], authors obtained precise estimates for the fractal

dimensions of the sample spanning cluster, the backbone, and

the minimal path in order to identify the universality classes of

four different Invasion percolation (IP) processes (site and bond

IP, with and without trapping) by using efficient algorithms

for simulating invasion percolation. In two dimensions IP is

characterized by two universality classes, one each for IP

without trapping, and site and bond IP with trapping. In a

three-dimensional site IP with and without trapping is in the

universality class of random percolation, while bond IP with

trapping is in a distinct universality class, which may be the

same as that of optimal paths in strongly disordered media.

Also, in [18], Masson et al. presented a computationally fast

A Percolation Algorithm

Based on Cellular Automata

Mohammad Khanjary a,*, Masoud Sabaei b and Mohammad Reza Meybodi b
a Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran

b Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

T

472

Invasion Percolation (IP) algorithm. IP is a numerical

approach for generating realistic fluid distributions for quasi-

static immiscible fluid invasion in porous media. The

algorithm proposed uses a binary-tree data structure to identify

the site connected to the invasion cluster that is the next to be

invaded and gravity is included. Also, trapping is not

explicitly treated in the numerical examples but can be added.

In [19], authors presented a recursive algorithm for

sampling properties of physical clusters such as size

distribution and percolation. The approach can be applied to

any system with periodic boundary conditions, given a spatial

definition of a cluster. The recursive cluster identification

algorithm is somewhat slower than the iterative methods at

low volume fraction but is at least as fast at high densities. The

percolation analysis, however, is considerably faster using

recursion, for all systems studied. In other research [20],

authors presented an efficient algorithm for finding the

current-carrying backbone in the planar site percolation

model. It finds the backbone in speed to be almost four times

as high as depth-first-search algorithms. Similar algorithm has

been introduced in comparison to commonly-used Tarjan's

depth-first-search algorithm in [21].

In [22], authors proposed a stochastic cellular automata

model for wild-land fire spread dynamics under flat terrain

and no-wind conditions. They modeled the dynamics of fire

spread as a stochastic event with an effective fire spread

probability S which is a function of three probabilities: the

proportion of vegetation cells across the lattice, the probability

of a burning cell become burnt, and the probability of the fire

spread from a burning cell to a neighbor vegetation cell.

III. CELLULAR AUTOMATA

A cellular automaton (CA) is a rule-based computing

machine, which was first proposed by von Newmann in early

1950s and systematic studies were pioneered by Wolfram in

1980s. Since a cellular automaton consists of space and time,

it is essentially equivalent to a dynamical system that is

discrete in both space and time. The evolution of such a

discrete system is governed by certain updating rules rather

than differential equations. Although the updating rules can

take many different forms, most common cellular automata

use relatively simple rules.

Formally, cellular automata are classified to three categories

[23].

1. Finite-State Cellular Automata

In general, we can define a finite-state cellular automaton

with a transition rule 𝐺 = [𝑔𝑖𝑗,…,𝑙], (𝑖, 𝑗, … , 𝑙 = 1,2, … , 𝑁) from

one state Φ𝑡 = [𝜙𝑖𝑗,…,𝑙
𝑡] at time level 𝑛 to a new state Φ𝑡+1 =

[𝜙𝑖𝑗,…,𝑙
𝑡+1] at a new time step 𝑛 + 1. The value of subscript

(𝑖, 𝑗, . . . , 𝑙) denotes the dimension, 𝑑, of the cellular automaton.

Therefore, a CA in the 𝑑-dimensional space has 𝑁𝑑 cells. For

the 2D case, this can be written as

𝐺 = Φ𝑡 → Φ𝑡+1, 𝑔𝑖𝑗: 𝜙𝑖𝑗
𝑡 → 𝜙𝑖𝑗

𝑡+1, (𝑖, 𝑗 = 1,2, … , 𝑁).

In the case of sum-rule with 4𝑟 + 1 neighbors, this

becomes

𝜙𝑖𝑗
𝑡+1 = 𝐺 (∑ ∑ 𝑎𝛼𝛽𝜙𝑖+𝛼,𝑗+𝛽

𝑡

𝑟

𝛽=−𝑟

𝑟

𝛼=−𝑟

), (𝑖, 𝑗 = 1,2, … , 𝑁),

where 𝑎𝛼𝛽 (𝛼, 𝛽 = ±1, ±2, … , ±𝑟) are the coefficients. The

cellular automata with fixed rules defined this way are

deterministic cellular automata. In contrast, there exists

another type, namely, the stochastic cellular automata that

arise naturally from the stochastic models for natural systems.

2. Stochastic Cellular Automata

When using cellular automata to simulate the phenomena

with stochastic components or noise such as percolation and

stochastic process, the more effective way is to introduce

some probability associated with certain rules. Usually, there

is a set of rules and each rule is applied with a probability.

Another way is that the state of a cell is updated according

to a rule only if certain conditions are met or certain values are

reached for some random variables. For example, the rule for

2D a cellular automaton 𝑔(𝜙𝑖𝑗
𝑡) = 𝜙𝑖𝑗

𝑡+1 is applied at a cell

only if a random variable 𝑣 ≤ Γ(𝜙𝑖𝑗
𝑡) where the function Γ ∈

[0, 1]. At each time step, a random number 𝑣 is generated for

each cell (𝑖, 𝑗), and the new state will be updated only if the

generated random number is greater than Γ, otherwise, it

remains unchanged. Cellular automata constructed this way

are called stochastic or probabilistic cellular automata.

3. Reversible Cellular Automata

A cellular automaton with an updating rule 𝑔(𝜙𝑖𝑗
𝑡) = 𝜙𝑖𝑗

𝑡+1

is generally irreversible in the sense that it is impossible to

know the states of a region such as all zeros were the same at a

previous time step or not. However, certain class of rules will

enable the automata to be reversible. For example, a simple

finite difference (FD) scheme for a dynamical system

𝑢(𝑡 + 1) = 𝑔[𝑢(𝑡)] − 𝑢(𝑡 − 1)

or

𝑢(𝑡 − 1) = 𝑔[𝑢(𝑡)] − 𝑢(𝑡 + 1),
is reversible since for any function 𝑔(𝑢), one can compute

𝑢(𝑡 + 1) from 𝑢(𝑡) and 𝑢(𝑡 − 1), and invert 𝑢(𝑡 − 1) from

𝑢(𝑡) and 𝑢(𝑡 + 1). The automaton rule for 2D reversible

automata can be similarly constructed as

𝑢𝑖,𝑗
𝑡+1 = 𝑔(𝑢𝑖,𝑗

𝑡) − 𝑢𝑖,𝑗
𝑡−1,

together with appropriate boundary conditions such as fixed-

state boundary conditions.

IV. THE ALGORITHM: PADSN

1. The Model

The model is based on the spatially explicit representation

and the landscape is depicted as a square and two-dimensional

lattice (a typical square lattice has been shown in Fig. 1). Each

cell is defined by:

473

i. Its discrete position (𝑖, 𝑗) in the lattice, where 𝑖 =
1, … , 𝑙 is the row and 𝑗 = 1, … , 𝑙 is the column.

ii. The finite set of internal states variables that

describes the possible behavior of the cells in a

given time step 𝑡 which are 𝑆(𝑖,𝑗)
𝑡 ∈ [𝐵, 𝑂, 𝑃] where

B means the cell is blocked and nothing can

percolate through this cell. These cells are shown

by black shades in Fig. 1. O means this cell is open

(not blocked) and could be percolated, but it has

not been percolated so far. These cells are shown

by white shades in Fig. 1. P means this cell was an

open cell and is percolated now. These cells are

shown by blue shades in Fig. 1.

iii. The set of finite Moore neighborhood cells 𝛮(𝑖, 𝑗),

where is the Moore neighborhood as shown in Fig.

2 and represents the neighborhood relations in the

model and comprises the eight cells surrounding

(𝑖∗, 𝑗∗) of a central cell (𝑖, 𝑗) according with the

definition following definition:

𝛮(𝑖, 𝑗) = {(𝑖∗, 𝑗∗): |𝑖 − 𝑖∗| ≤ 1, |𝑗 − 𝑗∗| ≤ 1}

iv. The transition function that calculates the future

cell state as a function of the present state of the

cell and presents neighborhood cell states

𝑓: 𝑆(𝑖,𝑗)
𝑡 × 𝑆𝑁(𝑖,𝑗)

𝑡 → 𝑆(𝑖,𝑗)
𝑡+1 where the time 𝑡 is also

represented by discrete values or time steps. Thus,

the time evolution of the model is driven by the

interaction between the cell states and the cell

neighborhood states. Starting from a given

configuration of cells initial states, the cellular

automaton self-replicates the sequent cell states.

The cellular automata model is stochastic because

the state transition function is performed according

to probabilities values.

Fig. 1. A typical 8 × 8 lattice. Black shades represents the blocked cells, white

shades represents the open cells and blue shades represents the percolated

cells.

2. State Transition

As it mentioned in previous section, we use the Moore

neighborhood model in our algorithm. As it is shown in Fig. 2,

each cell has eight neighbors. If current state of a cell in

blocked, nothing could change its state and it will keep its

state forever (see Fig. 3(a)).

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1) (i,j) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)

Fig. 2. The Moore neighborhood model which is used in the algorithm.

Also, if the current state of the cell is percolated, nothing

can change its state (see Fig. 3(b)). But if the current state of

the cell is open and there is at least one neighbor with

percolated state, then its state will be changed to percolated

(see Fig. 3(b)).

a) State transition for blocked status.

b) State transition for open and percolated status.

Fig. 3. State transition of cellular automata in our algorithm.

3. The algorithm

The simplest data structure for representing a lattice is

matrix. But as it is shown in Fig. 3, the only state transition

will be happened from open state to percolated state and

nothing will be done for blocked and percolated states.

Therefore, it does not need to check all cells and only

checking the conditions of cell with open state is enough to

progress the algorithm. Therefore, a preprocess phase will be

done on the matrix to insert all cells with open state into a

linked list. Then, state of each cell in this linked list will be

updated by using mentioned rules in previous section. At the

beginning some cells with open state in the edge of lattice will

be turned to percolated. If state of a cell changed to

percolated, it will be removed from linked list. Fig. 4 shows

the pseudo code of the algorithm.

percolated

Always

open

No percolated
neighbor

At least one percolated neighbor

blocked

Always

474

The algorithm will be terminated in one of the two

following situations:

 When the current cell is an edge cell in the lattice and state

transition from open state to percolated state has been done in

this iteration, it means a percolation clump from other side of

lattice to this side exists. In other words, percolation occurred.

In this situation, the algorithm will be terminated and checking

other cells is not needed.

 When all cells in linked list passed and no state transition

could be done on these cells. It means there is not any other

open cell in the lattice which its state could be changed

anymore. This tells that there is not any spanning clump and

algorithm will be terminated.

Fig. 5 shows all phases of the algorithm on a sample 8 × 8

lattice.

4. Complexity of the algorithm

In this section, we discuss on complexity of the proposed

algorithm. Given a 𝑛 × 𝑛 lattice with 𝑚 open cells, obviously,

the best case will happen when there is a chain of 𝑚 cells

which spans the lattice as it is shown in Fig. 6. Therefore, the

complexity for best case of the algorithm will be Ω(𝑚). Also,

the worst case of the algorithm is happened when the lattice is

like Fig. 7. As it seen, number of phases to complete the

algorithm will be as

(
𝑛

2
× (𝑛 − 1)) + 1 = 𝑂(𝑛2)

For each phase at most 𝑚 cells in linked list must be

processed. Therefore, in worst case the complexity of the

algorithm will be 𝑂(𝑚𝑛2).

% Pseudo code of Percolation Algorithm based on Cellular Automata (PACA)

function PACA(𝐿𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡, 𝐿𝑎𝑡𝑡𝑖𝑐𝑒)
 for all 𝑐𝑒𝑙𝑙(𝑖, 𝑗) in 𝐿𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡

 if 𝑐𝑒𝑙𝑙(𝑖, 𝑗) has at least one neighbor with 𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑒𝑑 state in 𝐿𝑎𝑡𝑡𝑖𝑐𝑒
 change the state of 𝑐𝑒𝑙𝑙(𝑖, 𝑗) to 𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑑
 if 𝑐𝑒𝑙𝑙(𝑖, 𝑗) is a edge cell in 𝐿𝑎𝑡𝑡𝑖𝑐𝑒
 return “there is a spanning clump in the lattice!”

 end if

 end if

 end for

 return “there is not any spanning clump in the lattice!”

end function

Fig. 4. . The proposed algorithm.

Phase 1

Phase 2

Phase 5

Phase 6

Phase 3

Phase 4

Phase 7

Phase 8

Fig. 5. Phases of the algorithm on a sample 8 × 8 lattice. As seen, at the latest phase (8th) of our sample, state of a cell in the other edge of lattice changes to

percolated and due to first condition, algorithm will be terminated.

475

Fig. 6. Best case for the algorithm.

Fig. 7. Worst case for the algorithm.

1

2

3

4

5

6

7

8

 1 2 3 4 5 6 7 8

Fig. 8. Decompose of lattice to execute algorithm parallel.

TABLE I
INDEXES OF DECOMPOSED SLICES

𝑟 = 𝑘2 Row indexes Col indexes

1 1 to 5 1 to 5

2 4 to 8 1 to 5

3 1 to 5 4 to 8

4 4 to 8 4 to 8

5. Distributedness

As it is mentioned in previous sections, the proposed

algorithm could be executed distributed or parallel. Assuming

that we have a single original lattice which all threads can

access it. The lattice could be decomposed to some equal

slices and then, an instance of algorithm code be run for each

slice separately.

Consider Fig. 8. As it is shown, a 𝑛 × 𝑛 lattice could be

broken to 𝑟 = 𝑘2 slices with 𝑚 × 𝑚 cells (where 𝑚 =
𝑛

𝑘
). In

our example (Fig. 8), we decomposed a 8 × 8 lattice to 4

slices with 4 × 4 cells. To consider the border effects of each

slice in neighboring slices, in each iteration, the algorithm read

(𝑚 + 2) × (𝑚 + 2) cells from the lattice (if applicable). In

other word, the surrounding row and column of a slice which

put into other neighboring slices affect the results and must be

considered. The indexes of each slices in Fig. 8 which must be

read in each phase have been shown in table I.

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduced an algorithm based on cellular

automata to check the establishment of spanning clump

(percolation) in a two-dimensional The proposed algorithm

works locally and could be executed distributed/parallel which

makes it suitable for huge data experiments. The order of

proposed algorithm in worst case is 𝑂(𝑚𝑛2). Moreover, the

approach of the algorithm could be extended to higher

dimensions.

REFERENCES

[1] E.N. Gilbert, “Random Plane Networks,” J. SIAM, vol. 9, no. 4, pp.
533-543, 1961.

[2] I. Glauche, W. Krause, R. Sollacher and M. Greiner, “Continuum

Percolation of Wireless Ad Hoc Communication Networks,” Physica A,
vol. 325, pp. 577-600, 2003.

[3] A. Jiang and J. Bruck, “Monotone Percolation and the Topology Control

of Wireless Networks,” in Proc. IEEE INFOCOM, 2005, pp. 327-338.
[4] H.M. Ammari and S.K. Das, “Integrated coverage and connectivity in

wireless sensor networks: A two-dimensional percolation problem,”

IEEE Transactions on Computers, vol. 57, no. 10, pp. 1423-1434, 2008.
[5] H.M. Ammari and S.K. Das, “Critical density for coverage and

connectivity in three-dimensional wireless sensor networks using

continuum percolation,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 6, pp. 872-885, 2009.

[6] F. Xing and W. Wang, “On the critical phase transition time of wireless

multi-hop networks with random failures,” in Proc. ACM MOBICOM,
2008, pp. 175-186.

[7] L. Liu, X. Zhang and H.M. Ma, “Optimal density estimation for

exposure-path prevention in wireless sensor networks using percolation
theory,” in Proc. IEEE INFOCOM, 2012, pp. 2601-2605.

[8] L. Liu, X. Zhang and H. Ma, “Percolation theory-based exposure-path

prevention for wireless sensor networks coverage in internet of things,”
IEEE Sensors Journal, vol. 13, no. 10, pp. 3625-3636, 2013.

[9] L. Liang, Z. Xi and M. Huadong, “Exposure-path prevention in

directional sensor networks using sector model based percolation,” in
Proc. IEEE ICC, 2009, pp. 1-5.

[10] G. Yang andD. Qiao, “Critical conditions for connected-k-coverage in

sensor networks,” IEEE Communications Letters, vol. 12, no. 9, pp.
651-653, 2008.

[11] P. Balister, Z. Zheng, S. Kumar and P. Sinha, “Trap coverage: Allowing

coverage holes of bounded diameter in wireless sensor networks,” in
Proc. IEEE INFOCOM, 2009, pp. 136-144.

[12] M. Khanjary, M. Sabaei and M.R. Meybodi, “Critical density for
coverage and connectivity in two-dimensional aligned-orientation

directional sensor networks using continuum percolation,” IEEE Sensors

Journal, vol. 14, no. 8, pp. 2856-2863, 2014.
[13] G. Grimmett, “Percolation,” Springer Verlag, 1989.

[14] R. Meester and R. Roy, “Continuum Percolation,” Cambridge

University Press, 1996.
[15] S. Mertens and C. Moore, “Continuum Percolation Thresholds in Two

Dimensions,” Phys. Rev. E 86, 061109, 2012.

476

[16] J. Hoshen, P. Klymko and R. Kopelman, “Percolation and cluster

distribution. III. Algorithms for the site-bond problem,” Journal of
Statistical Physics, vol. 21, no. 5, pp. 583-600, 1979.

[17] A.P. Sheppard, M.A. Knackstedt, W.V. Pinczewski and M. Sahimi,

“Invasion percolation: new algorithms and universality classes,” J. Phys.
A: Math. Gen., vol. 32, pp. L521–L529, 1999.

[18] Y. Masson and S.R. Pride, “A Fast Algorithm for Invasion Percolation,”

Transp Porous Med., vol. 102, pp. 301–312, 2014.
[19] T. Edvinsson, P. J. Rasmark and C. Elvingson, “Cluster Identification

and Percolation Analysis Using a Recursive Algorithm,” Molecular

Simulation, vol. 23, no. 3, pp. 169-190, 1999.
[20] W.G. Yin and R. Tao, “Algorithm for finding two-dimensional site

percolation backbones,” Physica B: Condensed Matter, vol. 279, no. 1–

3, pp. 84-86, 2000.
[21] W.G. Yin and R. Tao, “Rapid Algorithm For Identifying Backbones In

The Two-Dimensional Percolation Model,” International Journal of

Modern Physics C, vol. 14, no. 10, pp. 1427-1437, 2003.
[22] R.M. Almeida and E.E.N. Macau, “Stochastic Cellular Automata Model

For Wildland Fire Spread Dynamics,” in Proc. DINCON, Serra Negra,

2010, pp. 249-253.
[23] X.S. Yang and Y. Young, “Cellular Automata, PDEs and Pattern

Formation,” Handbook of Bioinspired Algorithms and Applications,

Chapman & Hall/CRC Press, 2005, pp. 271-282.

477

