Section: Transforming grammars (Ch. 6)

Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

\[A \to x_1 B x_2 \]

where A and B are different variables, and B has the productions

\[B \to y_1 | y_2 | \ldots | y_n \]

Then can construct G’ from G by deleting

\[A \to x_1 B x_2 \]

from P and adding to it

\[A \to x_1 y_1 x_2 | x_1 y_2 x_2 | \ldots | x_1 y_n x_2 \]

Then, \(L(G) = L(G') \).
Example:

\[S \rightarrow aBa \quad \text{becomes} \quad S \rightarrow aS \alpha \alpha \alpha \]
\[B \rightarrow aS \mid a \quad \text{becomes} \quad B \rightarrow aS \mid a \]

\[B \text{ prods now useless} \]

Definition: A production of the form
\[A \rightarrow Ax, \ A \in V, \ x \in (V \cup T)^* \] is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \to E + T \mid T \\
T & \to T \ast F \mid F \\
F & \to I \mid (E) \\
I & \to a \mid b
\end{align*}
\]

Derivation of \(a + b + a + a\) is:

\[
\begin{align*}
E & \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \\
\ast & \Rightarrow a + T + T + T
\end{align*}
\]
Theorem (Removing Left recursion)
Let $G=(V,T,S,P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

$$A \rightarrow A.x_1 \mid A.x_2 \mid \ldots \mid A.x_n$$
$$A \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m$$

where x_i, y_i are in $(V \cup T)^*$. Then $G'=(V\cup\{Z\}, T, S, P')$ and P' replaces rules of form above by

$$A \rightarrow y_i.y_iZ, \ i=1,2,\ldots,m$$
$$Z \rightarrow x_i.x_iZ, \ i=1,2,\ldots,n$$
Example:

\[
E \rightarrow E + T | T \\
T \rightarrow T * F | F
\]

becomes

\[
E \rightarrow T | T Z \\
Z \rightarrow + T | \#T Z \\
T \rightarrow F | 1 = Y \\
Y \rightarrow * F | * F Y
\]

Now, Derivation of \(a + b + a + a \) is:

\[
E \rightarrow T Z \rightarrow F Z \rightarrow Z Z \\
\rightarrow a Z
\]
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. L(G)=L(G’).
To Remove Useless Productions:
Let G=(V,T,S,P).

I. Compute $V_1=\{\text{Variables that can derive strings of terminals}\}$

1. $V_1=\emptyset$

2. Repeat until no more variables added
 - For every $A \in V$ with $A \rightarrow x_1x_2 \ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 =$ all productions in P with symbols in $(V_1 \cup T)^*$

Then $G_1=(V_1,T,S,P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G)=L(G')$ and G' has no useless productions.
Example:

\[
\begin{align*}
S & \rightarrow aB \mid bA \\
A & \rightarrow aA \\
B & \rightarrow Sa \mid b \\
C & \rightarrow cBc \mid a \\
D & \rightarrow bCb \\
E & \rightarrow Aa \mid b \\
\end{align*}
\]

\[
V_1 = \{B, C, E, D, S\}
\]

\[
\begin{align*}
G' & \quad S \Rightarrow aB \\
& \quad B \Rightarrow Sa \mid b
\end{align*}
\]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists$ production $A \rightarrow \lambda \}$

2. Repeat until no more additions
 - if $B \rightarrow A_1 A_2 \ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n

3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1 x_2 \ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[S \rightarrow Ab \]
\[A \rightarrow BCB \mid Aa \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow cC \mid \lambda \]

\[V_n = \exists B, C, A \]

\[G' \]
\[S \rightarrow Ab \mid b \]
\[A \rightarrow BCB \mid CB \mid BB \mid BC \mid B \mid NAa \mid a \]
\[B \rightarrow b \]
\[C \rightarrow cC \mid c \]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

- \(A \rightarrow B \) becomes \(B \rightarrow a \mid ab \)

But what if we have

- \(A \rightarrow B \) becomes \(A \rightarrow C \)
- \(B \rightarrow C \)
- \(C \rightarrow A \)
Theorem (Remove unit productions)
Let $G=(V,T,S,P)$ be a CFG without λ-productions. Then \exists CFG $G'=(V',T',S,P')$ that does not have any unit-productions and $L(G)=L(G')$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \Rightarrow B$ (Draw a dependency graph)

2. Construct $G'=(V',T',S,P')$ by
 (a) Put all non-unit productions in P'
 (b) For all $A \Rightarrow^* B$ s.t. $B \rightarrow y_1|y_2| \ldots y_n \in P'$, put $A \rightarrow y_1|y_2| \ldots y_n \in P'$
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A

S → AB
B → Bb | c | Da
C → c | Da | Bb
A → Bb | c | Da
D → Bb | c | Da
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc | e \]
\[C_1 \rightarrow c \]
\[C_2 \rightarrow d \]
\[C_3 \rightarrow c \]
\[S \rightarrow CZ_1 \]
\[Z_1 \rightarrow BZ_2 \]
\[Z_2 \rightarrow C_1 C_2 \]
\[C \rightarrow CC_3 \]

\[CB_1 C_2 \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[A_i \rightarrow A_j x_j, \quad j > i \]
\[Z_i \rightarrow A_j x_j, \quad j \leq n \]
\[A_i \rightarrow ax_i \]

where \(a \in T, \ x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}, \) etc until all productions are in the correct form.

For next exam, for GNF just know the format of GNF