Section: Turing Machines - Building Blocks

1. Given Turing Machines M1 and M2

Notation for

- Run M1
- Run M2

\[M1 \rightarrow M2 \]

\[z \in \text{any symbol in} \]

\[z \rightarrow z, R \]

\[z \rightarrow z, L \]
2. Given Turing Machines M_1 and M_2

M_1

M_2

z represents any symbol in
x is an element of

$M_1 \xrightarrow{x} M_2$

$z; z, L$

$x; x, R$
3. Given Turing Machines M1, M2, and M3

M1

M2

M3

x is an element of

y is any element except x from

z is any element from
More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

z is any symbol in Γ

x is a specific symbol from Γ

1. s - start
2. R - move right
3. L - move left
4. x - write x (and don’t move)
5. R_a - move right until you see an a
6. \(L_a \) - move left until you see an \(a \)

7. \(R_{\sim a} \) - move right until you see anything that is not an \(a \)

8. \(L_{\sim a} \) - move left until you see anything that is not an \(a \)

9. \(h \) - halt in a final state

10. \(\frac{a,b}{w} \rightarrow \)

 If the current symbol is a or b, let \(w \) represent the current symbol.
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$. If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb
input: ba, output: ba

What is the running time?

$\mathcal{O}(n)$
Example

Assume input string \(w \in \Sigma^+, \Sigma = \{a, b\}, |w| > 0 \)

For each \(a \) in the string, append a \(b \) to the end of the string.

input: \(a b b a b b \), output: \(a b b a b b b b \)

The tape head should finish pointing at the leftmost symbol of \(w \).
Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An *algorithm* for a function \(f : D \rightarrow R \) is a TM \(M \), which given input \(d \in D \), halts with answer \(f(d) \in R \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{align*}
\delta &= \{ \langle 1, + \rangle \} \\
\text{start with:} & \quad 111 + 1111 \\
\text{end with:} & \quad 1111111
\end{align*}
\]
Example: Copy a String, \(f(w) = w0w, \)
\(w \in \Sigma^*, \Sigma = \{a, b, c\} \)

Denoted by \(C \)

\[
\text{start with: } \quad \begin{array}{c}
B \\
\uparrow
\end{array}
\quad \begin{array}{c}
\text{Babac}
\end{array}
\quad \begin{array}{c}
B
\end{array}
\]

\[
\text{end with: } \quad \begin{array}{c}
B \\
\uparrow
\end{array}
\quad \begin{array}{c}
\text{Babac0abac}
\end{array}
\quad \begin{array}{c}
B
\end{array}
\]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

start with: aaBba_bca

↑

end with: aaBBbaca

↑
Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

\[
\begin{align*}
\text{start with:} & \quad \text{babcaBba} \\
\text{end with:} & \quad \text{bacaBBba}
\end{align*}
\]

(similar to S_R)
Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, f(x*y)=x*y, x and y unary numbers. Assume x,y>0.

start with: 1111*11
↑

end with: 11111111
↑