Section: Decidability

Computability A function f with domain D is *computable* if there exists some TM M such that M computes f for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.
The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w?
Theorem The halting problem is undecidable.

Proof: (by contradiction)

- Assume there is a TM H (or algorithm) that solves this problem. TM H has 2 final states, \(q_y \) represents yes and \(q_n \) represents no.

\[
H(w_M, w) = \begin{cases}
\text{halts } q_y \text{ if } M \text{ halts on } w \\
\text{halts } q_n \text{ if } M \text{ doesn't halt on } w
\end{cases}
\]

TM H always halts in a final state.
Construct TM H' from H

$$H'(w_M, w) = \begin{cases} \text{halts} & \text{if } M \text{ not halt on } w \\ \text{not halt} & \text{if } M \text{ halts on } w \end{cases}$$

Construct TM \hat{H} from H'

$$\hat{H}(w_M) = \begin{cases} \text{halts} & \text{if } M \text{ not halt on } w_M \\ \text{not halt} & \text{if } M \text{ halts on } w_M \end{cases}$$

Note that \hat{H} is a TM.

There is some encoding of it, say $\hat{w}_{\hat{H}}$.

What happens if we run \hat{H} with input $\hat{w}_{\hat{H}}$?

$$\hat{H}(\hat{w}_{\hat{H}}) = \begin{cases} \text{halts} & \text{if } \hat{H} \text{ doesn't halt on } \hat{w}_{\hat{H}} \\ \text{doesn't halt} & \text{if } \hat{H} \text{ halts on } \hat{w}_{\hat{H}} \end{cases}$$

\hat{H} halts on $\hat{w}_{\hat{H}}$ if \hat{H} doesn't halt on $\hat{w}_{\hat{H}}$.

\Rightarrow contradiction. \Rightarrow undecidable problem.
Theorem: If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

Proof: Let L be an RE language over Σ.
Let M be the TM such that $L=L(M)$.
Let H be the TM that solves the halting problem.

Calculate $H(W_M,w)$. If H says no, then w is not in L.
(since M does not halt on w)
If H says yes, then apply M to w. M should halt and tell us if w is in L or not.
We can determine if w is in L or not.
\Rightarrow L is recursive \Rightarrow Every RE language is recursive. Contradiction!
A problem A is *reduced* to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable.
State-entry problem Given TM
\[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \], state \(q \in Q \), and
string \(w \in \Sigma^* \), is state \(q \) ever entered
when \(M \) is applied to \(w \)?

This is an undecidable problem!

• Proof:

TM \(E \) solves state-entry problem

\[E'(w_M, w) = \begin{cases}
M \text{ halts on } w \text{ if } & \text{M enters state } q \\
M \text{ doesn’t halt on } w \text{ if } & \text{M doesn’t enter state } q
\end{cases} \]
But halting problem is undecidable
⇒ contradiction!
⇒ state-entry must be undecidable