Section: LR Parsing

LR PARSING

LR(k) Parser

- bottom-up parser
- shift-reduce parser
- L means: reads input left to right
- R means: produces a rightmost derivation
- k - number of lookahead symbols

LR parsing process

- convert CFG to PDA
- Use the PDA and lookahead symbols
Convert CFG to PDA

The constructed NPDA:

- three states: s, q, f
 start in state s, assume z on stack
- all rewrite rules in state s,
 backwards
 rules pop rhs, then push lhs
 \((s,\text{lhs}) \in \delta(s,\lambda,\text{rhs})\)
 This is called a reduce operation.
- additional rules in s to recognize terminals
 For each \(x \in \Sigma, \ g \in \Gamma, \ (s,\text{xg}) \in \delta(s,x,g)\)
 This is called a shift operation.
- pop S from stack and move into state q
- pop z from stack, move into f, accept.
Example: Construct a PDA.

S → aSb
S → b

Diagram:

- Initial state: S
- Transitions:
 - S → aSb
 - S → b

- Actions:
 - Reduces
 - Shifts
 - Gen
LR Parsing Actions

1. shift
 transfer the lookahead to the stack

2. reduce
 For $X \rightarrow w$, replace w by X on the stack

3. accept
 input string is in language

4. error
 input string is not in language

LR(1) Parse Table

- Columns:
 terminals, $\$, and variables

- Rows:
 state numbers: represent patterns in a derivation
LR(1) Parse Table Example

1) $S \rightarrow aSb$
2) $S \rightarrow b$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>s5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r1</td>
<td>r1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definition of entries:

- sN - shift terminal and move to state N
- N - move to state N
- rN - reduce by rule number N
- acc - accept
- blank - error
state = 0
push(state)
read(symbol)
entry = T[state, symbol]
while entry.action ≠ accept do
 if entry.action == shift then
 push(symbol)
 state = entry.state
 push(state)
 read(symbol)
 else if entry.action == reduce then
 do 2*size_rhs times {pop()}
 state := top-of-stack()
 push(entry.rule.lhs)
 state = T[state, entry.rule.lhs]
 push(state)
 else if entry.action == blank then
 error
 entry = T[state, symbol]
 end while
if symbol ≠ $ then error
Example:
Trace aabbb
To construct the LR(1) parse table:

- Construct a dfa to model the top of the stack
- Using the dfa, construct an LR(1) parse table

To Construct the DFA

- Add $S' \rightarrow S$
- place a marker “_” on the rhs $S' \rightarrow _S$
- Compute closure($S' \rightarrow _S$).

Def. of closure:

1. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\}$ if x is a terminal.
2. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\} \cup (\text{closure}(x \rightarrow _w))$ for all w if x is a variable.
• The closure($S' \rightarrow _S$) is state 0 and “unprocessed”.

• Repeat until all states have been processed
 – unproc = any unprocessed state
 – For each x that appears in $A \rightarrow ux_v$ do
 * Add a transition labeled “x” from state “unproc” to a new state with production $A \rightarrow ux_v$
 * The set of productions for the new state are: closure($A \rightarrow ux_v$)
 * If the new state is identical to another state, combine the states Otherwise, mark the new state as “unprocessed”

• Identify final states.
Example: Construct DFA

(0) $S' \rightarrow S$
(1) $S \rightarrow aSb$
(2) $S \rightarrow b$

aabbb
0:
1:
2:
3:
4:
5:
Backtracking through the DFA

Consider aabbb

• Start in state 0.
• Shift “a” and move to state 2.
• Shift “a” and move to state 2.
• Shift “b” and move to state 3.
 Reduce by “S → b”
 Pop “b” and Backtrack to state 2.
 Shift “S” and move to state 4.
• Shift “b” and move to state 5.
 Reduce by “S → aSb”
 Pop “aSb” and Backtrack to state 2.
 Shift “S” and move to state 4.
• Shift “b” and move to state 5.
 Reduce by “S → aSb”
 Pop “aSb” and Backtrack to state 0.
Shift “S” and move to state 1.

- Accept. aabbb is in the language.
To construct LR(1) table from diagram:

1. If there is an arc from state1 to state2
 (a) arc labeled x is terminal or $ T[state1, x] = \text{sh state2}$
 (b) arc labeled X is nonterminal $ T[state1, X] = \text{state2}$

2. If state1 is a final state with $X \rightarrow w$
 For all a in FOLLOW(X),
 $T[state1,a] = \text{reduce by } X \rightarrow w$

3. If state1 is a final state with $S' \rightarrow S$
 $T[state1,\$] = \text{accept}$

4. All other entries are error
Example: LR(1) Parse Table

(0) \(S' \rightarrow S \)
(1) \(S \rightarrow aSb \)
(2) \(S \rightarrow b \)

Here is the LR(1) Parse Table with extra information about the stack contents of each state.

<table>
<thead>
<tr>
<th>Stack contents</th>
<th>State number</th>
<th>Terminals</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(empty)</td>
<td>0</td>
<td>52 53</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>aS</td>
<td>2</td>
<td>52 53</td>
<td>4</td>
</tr>
<tr>
<td>aq*b + b</td>
<td>3</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>aa*S</td>
<td>4</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>aa*5b</td>
<td>5</td>
<td>r1 r1</td>
<td></td>
</tr>
</tbody>
</table>
Actions for entries in LR(1) Parse table $T[\text{state}, \text{symbol}]$

Let entry $= T[\text{state}, \text{symbol}]$.

- If symbol is a terminal or $\$$
 - If entry is “shift statei”
 push lookahead and statei on the stack
 - If entry is “reduce by rule $X \rightarrow w$”
 pop w and k states (k is the size of w) from the stack.
 - If entry is “accept”
 Halt. The string is in the language.
 - If entry is “error”
 Halt. The string is not in the language.
• If symbol is nonterminal
 We have just reduced the rhs of a production $X \rightarrow w$ to a symbol. The entry is a state number, call it state_i. Push $T[\text{state}_i, X]$ on the stack.
Constructing Parse Tables for CFG’s with λ-rules

$A \rightarrow \lambda$ written as $A \rightarrow \lambda_-$

Example

$S \rightarrow ddX$
$X \rightarrow aX$
$X \rightarrow \lambda$

Add a new start symbol and number the rules:

(0) $S' \rightarrow S$
(1) $S \rightarrow ddX$
(2) $X \rightarrow aX$
(3) $X \rightarrow \lambda$

Construct the DFA:
Construct the LR(1) Parse Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>d</th>
<th>$</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s5, r3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>s5, r3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>r2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SLR(1) Parsing example. Note there are conflicts so this is not an LR(1) grammar. The orange entries indicate there is more than one choice.
You can click on a conflict entry and choose which one to use. In this case is it reduce by rule 1 or reduce by rule 2. Then you can go ahead and parse strings using the choice for conflicts that you made.
Here we were able to parse the string $aaaacbbb$ with the conflicts chosen. I chose r_1 for $T[8, b]$ and r_2 for $T[8, \$$]. This string may not have been accepted if I chose different ways to handle the conflict.
Possible Conflicts:

1. Shift/Reduce Conflict
 Example:

 \[A \rightarrow ab \]
 \[A \rightarrow abcd \]

 In the DFA:

 \[A \rightarrow ab_ \]
 \[A \rightarrow ab_ cd \]

2. Reduce/Reduce Conflict
 Example:

 \[A \rightarrow ab \]
 \[B \rightarrow ab \]

 In the DFA:

 \[A \rightarrow ab_ \]
 \[B \rightarrow ab_ \]

3. Shift/Shift Conflict

 \[\text{never! It is a DFA} \]