Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q
Example: DFA that accepts even binary numbers.

Transition Diagram:

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q0,1) = \)
The diagram illustrates a finite automaton with two states, q0 and q1. The table shows the transition and acceptance rules:

- Input 0 goes to state q1, which is accepted.
- Input 10 goes to state q0, which is accepted.
- Input 11 goes to state q0, which is rejected.
- Input 100 goes to state q1, which is accepted.

The automaton accepts inputs that result in an accepted state.
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = $\delta(q, s)$
 s = next symbol to the right on tape
if q \in F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) $\begin{array}{cccc}
 1 & 0 & 0 & \hfill \\
\end{array}$

\begin{array}{c}
q0 \\
\hline
q1
\end{array}

2) $\begin{array}{cccc}
 1 & 0 & 0 & \hfill \\
\end{array}$

\begin{array}{c}
q0 \\
\hline
q1
\end{array}

3) $\begin{array}{cccc}
 1 & 0 & 0 & \hfill \\
\end{array}$

\begin{array}{c}
q0 \\
\hline
q1
\end{array}

4) $\begin{array}{cccc}
 1 & 0 & 0 & \hfill \\
\end{array}$

\begin{array}{c}
q0 \\
\hline
q1
\end{array}
Definition:
\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,
\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: $L(M) = \{ b^n a^1 n > 0 \}$
Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of a's and an even number of b's} \} \]
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language L is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = \((Q, \Sigma, \delta, q_0, F) \)

where

\(Q \) is finite set of states
\(\Sigma \) is tape (input) alphabet
\(q_0 \) is initial state
\(F \subseteq Q \) is set of final states.
\(\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q \)
Example

Note: In this example $\delta(q_0, a) = L =$
Example
\[L = \{(ab)^n \mid n > 0\} \cup \{a^nb \mid n > 0\} \]
Definition: $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example: From previous example:

$\delta^*(q_0, ab) =$

$\delta^*(q_0, aba) =$

Definition: For an NFA M, $L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA \(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\[Q_D = \]

\[F_D = \]

\[\delta_D : \]
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$

 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$

 (c) Add state B if it doesn’t exist

 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property

Replace_one_a_with_b or $R_{1\text{awb}}$ for short. If L is a regular, prove $R_{1\text{awb}}(L)$ is regular.

The property $R_{1\text{awb}}$ applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in $R_{1\text{awb}}(L)$.

Example 1: Consider $L = \{aaab, bbaa\}$

$R_{1\text{awb}}(L) =$

Example 2: Consider $\Sigma = \{a, b\}$, $L = \{w \in \Sigma^* \mid w$ has an even number of a’s and an even number of b’s\}$

$R_{1\text{awb}}(L) =$

Proof:
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider \(L = \{aaab, bbaa\} \)

\[\text{TruncPreb}(L) = \]

Example 2: Consider \(L = \{(bba)^n \mid n > 0\} \)

\[\text{TruncPreb}(L) = \]

Proof:
Minimizing Number of states in DFA
Why?
Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F$$
$$\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR }$$
$$\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F$$
Example:
Example: