Section: Regular Languages

Regular Expressions
Method to represent strings in a language

+ union (or)
○ concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^* = (a+b)^* a(a+b)\]

Strings over \(\Sigma^*\) that contain at least one a

Example:

\[(aa)^*\]

Strings with an even number of a's
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then

 • $r+s$ is R.E.
 • rs is R.E.
 • (r) is a R.E.
 • r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{ \lambda \}, \{ a \} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then

 (a) \(L(r+s) = L(r) \cup L(s) \)

 (b) \(L(rs) = L(r) \circ L(s) \)

 (c) \(L((r)) = L(r) \)

 (d) \(L((r)*) = (L(r)*) \)
Precedence Rules

* highest

Example:

\[ab^* + c = (a(b^*)) + c \]
Examples:

1. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}. \)
 \[(aa)^* a (bb)^* \]

2. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}. \)

3. Regular expression for all integers (including negative)
 \[\mathbb{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots\} \]
 \[(ab^* + abab^* + \ldots)ab \]
 \[0 + (- + \ldots) (1 + 2 + \ldots + 9) (0+1+\ldots+9) \]
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- **Proof:**

 \[\emptyset \quad \{ \lambda \} \quad \{ a \} \]

 Suppose \(r \) and \(s \) are R.E.

 1. \(r + s \)
 2. \(r \circ s \)
 3. \(r^* \)

 New final state
Example

\(ab^* + c \)
Theorem Let L be regular. Then \exists R.E. r s.t. $L = L(r)$.

Proof Idea: remove states successively until two states left

- Proof:

 L is regular
 $\Rightarrow \exists$ NFA M s.t. $L = \mathbb{L}(M)$

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with \emptyset
 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

\[r = (r_{ii}^* r_{ij} r_{ji}^* r_{jj} r_{ji})^* r_{ii} r_{ij} r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik} r_{kk}^* r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk} r_{kk}^* r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik} r_{kk}^* r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk} r_{kk}^* r_{ki}$</td>
</tr>
<tr>
<td>remove state q_k</td>
<td></td>
</tr>
</tbody>
</table>
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

- $r + r = r$
- $s + r^* s = r^* s$
- $r + \emptyset = r$
- $r\emptyset = \emptyset$
- $\emptyset^* = \emptyset$
- $r\lambda = r$
- $(\lambda + r)^* = \emptyset$
- $(\lambda + r)r^* = \emptyset$

and similar rules.
Example:
Edit the regular expression below:

```
((aa*b)*(a+aa*b)b)*(aa*b)*(a+aa*b)
```
Grammar $G = (V, T, S, P)$

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$
$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
A → Bx
A → x
where A,B ∈ V, x ∈ T*

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \ P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{S, B\}, \{a, b\}, S, P), \ P = \]
\[S \rightarrow aB \ | \ bS \ | \ \lambda \]
\[B \rightarrow aS \ | \ bB \]

\[L(G) = \{ \text{strings with an even no. of } a \}' \]
Theorem: L is a regular language iff \exists regular grammar G s.t. $L = L(G)$.

Outline of proof:

(\Leftarrow) Given a regular grammar G
Construct NFA M
Show $L(G) = L(M)$

(\Rightarrow) Given a regular language L
\exists DFA M s.t. $L = L(M)$
Construct reg. grammar G
Show $L(G) = L(M)$
Proof of Theorem:

\[\iff \] Given a regular grammar \(G \)
\[G = (V, T, S, P) \]
\[V = \{V_0, V_1, \ldots, V_y\} \]
\[T = \{v_0, v_1, \ldots, v_z\} \]
\[S = V_0 \]

Assume \(G \) is right-linear
(see book for left-linear case).
Construct NFA \(M \) s.t. \(L(G) = L(M) \)
If \(w \in L(G) \), \(w = v_1 v_2 \ldots v_k \)
\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]

\(V_0 \) is the start (initial) state

For each production, \(V_i \rightarrow aV_j \),

\[V_i \xrightarrow{a} V_j \]

For each production, \(V_i \rightarrow a \),

\[V_i \xrightarrow{a} V_f \]

Show \(L(G) = L(M) \)

Thus, given R.G. \(G \),

\(L(G) \) is regular
(⇒) Given a regular language L
\exists DFA M s.t. $L = L(M)$
$M = (Q, \Sigma, \delta, q_0, F)$
$Q = \{q_0, q_1, \ldots, q_n\}$
$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$
$G = (Q, \Sigma, q_0, P)$ if $\delta(q_i, a_j) = q_k$ then
\[q_i \rightarrow q_j \rightarrow q_k \in P \]

if $q_k \in F$ then
\[q_k \rightarrow \lambda \in P \]

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G) = L(M)$.

QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, \mathcal{P}), \quad \mathcal{P} = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example:

\[G = (Q, \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, q_0, F) \]

- \[q_0 \rightarrow a q_1 \]
- \[q_1 \rightarrow a q_0 \mid b q_1 \]